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DRAM-related papers from the same group

® “| ow-Cost Inter-Linked Subarrays (LISA): Enabling fast inter-subarray
data movement in DRAM", HPCA'16

» Efficient data-movement between sub-arrays inside DRAM

® “ChargeCache: Reducing DRAM Latency by Exploiting Row Access
Locality”, HPCA'16

» Reduce memory latency by shortening cell charge time

® "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology”, Micro'l7

» In-memory bitwise operation for DRAM

® “SoftMC: A Flexible and Practical Open-Sourced Infrastructure for
Enabling Experimental DRAM Studies”, HPCA'17

» Open-sourced DRAM controller on an FPGA
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About Micro’l7

® The 50th Annual IEEE/ACM International Symposium on
Microarchitecture, 2017

» A top conference in computer architecture (along with ISCA,
HPCA, ASPLOS)

» Sessions: DRAM, Accelerators, GPUs-1, Non-Volatile
Memory/Storage, In/Near Memory Computing, Security, Deep
Learning, Prediction, Consistency/Coherency Translation, Energy,
GPUs-2, OS and System Design, Unconventional Architectures,
Compilers and Microarch.

o Number Of Attendees 350? MICRO.ReVieWCNN

® Micro'l8 will be in Fukuoka
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Background (1/2)

¢ Demand for more and more memory (DRAM)

» Big data analysis, Al ...

¢ Increased DRAM capacity — Higher density of DRAM cells
» Capacity of 1 DIMM module: 1GB (2006?)— 32GB (2016)

» Same size — 32x density

¢ DRAM cells (capacitors) are super close to each other

» Increased interference from neighboring cells

DRAM cells
—® row
} Super close: SAMSUNG predicts

it to be <10 nm in the future

Interference
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Background (2/2)

® More aggressive refresh to reduce interference

» Refresh: key to keep DRAM contents consistent

» Refresh interval: 64 ms (now) — 16 ms (predicted)

e o B S B L

— Higher overhead (performance, energy)

Trade-off related to

, Interference Low High Low
Refresh interval

Overhead High Low Low

Detecting and mitigating DRAM failures (bit flips) caused by
interference is the key to achieve higher capacity with low overhead
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Characteristics of Failures

1. Failures are data-dependent

» Interference comes from neighboring cells — Different data,
different inference level

2. Failures are cell-dependent

» Due to variations in the manufacturing process

» “Cell X fails with a data pattern and a refresh rate” does not imply
“Every cell fails with the same pattern and the same refresh rate”

* This is not explicitly written, but assumed throughout the paper

Room for optimization: some cells can work well
even with shorter refresh intervals
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Detecting Failures

¢ Detecting faulty cells is the key

¢ Manufacturer testing

» Exhaustively test all cells before the module is shipped

» Not applicable to aggressive usages (e.g. shorten refresh interval)

¢ Online system-level testing

» Detect all possible cells that are susceptible to failures for all
possible contents at boot-time

» Enables aggressive optimizations after DRAMs are shipped

» Challenges in practice (next slide)
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Challenges of Online Testing

1. Internal memory addresses are 2. Faulty columns are remapped to a
hidden and scrambled redundant column
— Neighboring cells in the system . — Neighboring relationship may

address space are not real neighbors | change time to time

Cell Array i Original Cell Array
| ! '
Phisical g 5
Address i Physical S Y
System Linear Mapping X-1 X X-1 : Add!‘(?SS C L 4.9 6.7 } )
Address Scrambled Mapping X-4 X X+5 ‘ | $ *
: Remapping

Testing data-dependent failures online (w/o the proprietary
hardware specification) is very challenging

- e = o = = = =

SUWINIO)) JUDPUNPIY
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Key Observations

¢ Detecting every-possible failures is a overkill

» We only need possible failures with the current memory content

100
a |
= S0
%3 60 = Failures are highly data-
= A0 = pattern dependent
o e . P v e o <11 L T e
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Failing Cell ID
. 15 . .
£ ' # of failed rows with the current
‘% 5 : content is 2.4X — 35.2X smaller
E O e o e m o x = x e w e w0 s o thanevery possible data-
S 38S2p32z3z3:sz2z2¢ec8¢F5z%¢% ' u "
=2P>3022883:28535872%235 dependent failure ("ALL FAIL")
: 8% g7 3 <

* couldn’t see how to do it. # of any possible data

Figure 4: Percentage of rows that exhibit failures pattern for a row would be 278K (a row == 8K cells)
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MEMCON: Design

® MEMCON: tests one row for the current memory content

» Row update — Test the row w/ the new content & low refresh rate

1. If no failures happen — refresh the row at the low refresh rate

2. If failures do happen — refresh the row at the high refresh rate

A row is updated
(== data pattern of
this row is changed)

): NG (use high refresh rate)

;. OK (use low refresh rate)

I\ /1' » time

Test: Long refresh interval
(low refresh rate)
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MEMCON: Challenges

® A row cannot be accessed during a test

» The content must be temporarily copied to a different region

» to keep serving memory requests to that row

¢ Copy to a different region — extra read and write requests

1. Copy the tested row into the temporal region

2. Copy the tested row again to the temp region after the test

— Extra memory bandwidth, interfere with critical program
accesses

Design Challenge: How to minimize the overhead of testing?
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Cost-Benefit Analysis (1/3)

¢ Qverhead: Increased latency/energy due to extra copies

Option 1.

Test immediately after a write request
— Cost vs. Benefit trade-off depends on
the write frequency (not adjustable)

Option 2:
. Selective testing — Cost vs.
. Benefit trade-off is adjustable

IR J :'\
N N N
> > >
Q Q Q
S -5 S
\;‘ TESTING TESTING :j‘ TESTING \;‘ TESTING TESTING
O S O
AVG |- =7 ey
HI-REF COST |HI-REF {:10];(;" HI-RE AVG
I BN = [ | [ | HE . [ | | [ [ | 0L EQSZ
LO-REF LO-REF  LO-REF LO-REF |LO_—REF
@ - @ @ . + + T
lime lime | [ 1me
® Row update . h 13
(a) In—frequent testing (b) Frequent testing (c) Selective testing
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Cost-Benefit Analysis (2/3)

® How to selectively test? When should the test overhead

should paid?

» Cost with high refresh rate: Cy(t) = at : 3)

a >

» Cost with test + low refresh rate: C,(t) = C; + [t

- 5000 - Read and Compare (64 ms)

8 — 4000 - Copy and Compare (64 ms) - - =
@£ 000 1| = = HI-REF (16 ms) -

T ' -

& £ 2000

EE 1000

o £ 0

<

® Expr w/ real parameters: MinWritelnterval = 560ms, 864 ms

Predicting when the next write will come is the key
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Cost-Benefit Analysis (3/3)

* How C; is estimated from real values

¢ "Read and Compare” implementation

» Copies the row to the memory controller and keep the original
row idle for the test period

» C; =1068 ns

» cannot buffer many rows (due to space limitation)

¢ “Copy and Compare” mode

» Copies the row to a redundant row and keep the original row idle
for the test period

» C; ==1602 ns

» can buffer many rows
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Write Interval Prediction (1/2)

® How to predict write interval for a given write?

1

0.1 &

0.01
0.001

Traced write intervals of real applications

P (Write Interval
Length > x)

using a FPGA-based memory controller 00001 |, o oaate
0.00001
1 100 10000
x (ms)
(a) ACBrotherhood
1 1
= 0.1 | [
E’E 001 | Eﬁful'
25 0001 25 \W“M
‘E_ E 0.0001 g E oot
= ' R2= 0.93747 a R?=0.98579
0.00001 0.001
1 100 10000 1 100 10000
x (ms) X (ms)
(b) Netflix (c) SystemMgt

— Write intervals of real apps obey Pareto distribution
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Write Interval Prediction (2/2)

® Pareto distribution: decreasing hazard rate (DHR) property

» longer a page is not written to, longer it is expected to remain idle

Write now Write
| |

1

0.8

0.6
0.4

P(RIL) > 1024 ms

0.2

Figure 11: Probability that RIL is greater than 1024 ms, as a

~
CIL (x) RIL (V)

St

Good balance

(accuracy vs. opportunity)

16 32 64 128
Current Interval Length (CIL) in ms

256 1512 1024 2048:

4096 8152 16384 32768

—+—ACBrotherHood
—=—Blur
—MotionPlayback

AdobePhotoshop
~+—FinalCutProPlayback
—o—Netflix

AllSysMark
—a—FinalMaster
—e—SystemMgt

AVCHD
—=—AdobePremierePro

—=\/ideoEncode

function of CIL
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Evaluation Results

® Baseline: Always refresh with 16 ms interval (no failures occur)

® Upper bound: Always refresh with 64 ms interval (no failure
mitigation)

® Evaluation based on Ramulator and memory trace using FPGA

Application Type Time (s) Mem (GB) Threads

ACBrotherHood Game 209.1 28 8 Processor 1-4 cores, 4GHz, 4-wide, 128-entry instruction window
AdobePhotoshop Photo editing 149.2 3.0 4 - .

AllSysMark Media creation 2064 3.4 4 Last-Level c4B cachm?-hne, 15-W&}’13550C13t1\’f:

AVCHD Video playback 9172 5.9 9 Cache 512KB private cache-slice per core

BlurMotion Image processing  93.4 0.2 2 8GE DIMM

FinalCutPro Video editing 76.9 3.0 2 Main DDR3-1600 (800MHz clock rate, 1.25ns cyele time)
FinalMaster Movie display 245.1 2.0 2 Memory Baseline (treri/trrc): 1.95us/350ns
AdobePremiere  Video editing 208.3 5.0 2 MEMCON: fggry: LO-REF 7.8us, HI-REF 1.95us
MotionPlayBack  Video processing  233.9 5.6 2 MEMCON: frrc: 530/890/1600ns (16/32/64Gb)
Netflix Video streaming 229.4 4.6 2

SystemMgt Win 7 managing  466.2 7.6 2 Table 2: Evaluated system configuration
VideoEncode Video encoding 299.1 7.3 4

Table 1: Evaluated long-running workloads
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Evaluation Results (1/2)

® How many refreshes are reduced?

BCIL512ms OCL1024 ms BCIL2048 ms
. Upper Bound - Very close to the upper bound (a case
when all refreshes are 64 ms but no error
mitigation is applied)
- Different CILs do not affect the results
that much

(9] =y
L] un

=]

% Reduction in Refresh
overBaseline
t

ACBrother
AllSysMark
AVCHD
BlurMotion
FinalCutPro
Finalhaster
AdobePrem
MotionPlay
Metflix
System Mgt
VideoEnc

AdobePhoto

Figure 14: Reduction in refresh count with MEMCON

B Refresh Testing (correct) M Testing (mispredicted)

=1}
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=527 - Time spent for refresh reduced to 20
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g 2 2 T 3 3 8 % g = - Mis-prediction overhead is very small
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Figure 18: Fraction of time MEMCON spends on refresh oper-
ations and testing normalized to time spent on refresh in the

baseline with 16 ms refresh
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Evaluation Results (2/2)

¢ Performance Improvement thanks to MEMCON

» Workload speeds to due to less frequen refresh (that incurs less

resource contention inside DRAM)

1.5 1.7

O
514 | 60%Reduction . T 60% Reduction
g £ B 75% Reduction % o 1.5 W 75% Reduction
al - a 14
3 o % E
@ 1.2
& 8 11 & B 11
1 1
8Gb 16Gb 32Gb 8Gb 16Gb 32Gb
(a) Single-core (b) Four-core

Refresh reduction vs. performance improvement

- MEMCON significantly improves performance thanks to reduced refreshes
- MEMCON's performance improvement increases with DRAM chip capacity

* Injected extra memory accesses to emulate the baseline (cycle accurate simulations infeasible)
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Comparison with Other Techniques

¢ QOther refresh optimization techniques

» 32 ms: always refresh@32 ms interval (r iddle of long and short)

» RAIDR: mitigate every possible failures ( 1ssuming that the DRAM
internals are known)

» 64 ms: always refresh@64 ms interval (no failure mitigation)

1.6 1.8

E32ms CORAIDR mMEMCON @64 ms E32ms ORAIDR mMEMCON DO64 ms
T g o £16
2 51.4 g E
a ™ o,
=] _g 1]
D S5 o £
o3 S 312
" S g
u ] sa]
1 1
8Gb 16Gb 32Gb 8Gb 16Gb 32Gb
(a) Single-core (b) Four-core

Dynamically detecting refresh interval for each row
depending on the current content is the most effective
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Related Work

® Reverse-Engineering of DRAM internal structures
» [Jung et al, MEMSYS'16], [Khan et al., DSN'16], [Lee et al., SIGMETRICS'17]

» MEMCON does not require DRAM internal stru tures such as how addresses
are scrambled

® Multi-Rate DRAM Refresh

» [Liu et al., ISCA12], [Liu et al., ASPLOS'11], [Qureshi et al., DSN'15],
[Venkastesan el al., HPCA'06]

» Testing which cell to be refreshed with high/low rate is first done in MEMCON
(existing works use simple tests)

® Refresh Optimization

» [Chang et al., HPCA'14], [Isen et al,, ISCA'09], [Mukundan et al., ISCA'13], [Nair
et al., HPCA'13], [Steucheli et al., ISCA'10]

» MEMCON is orthogonal and can be used on top of these works (?)
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