
A Top-Down Approach to

Achieving Performance

Predictability in Database Systems

Harunobu Daikoku
HPCS Lab., University of Tsukuba

SIGMOD 2017 - Conference Overview

• Date: 5/14 (Sun) ~ 5/19 (Fri)

• Venue: Hilton Chicago, IL, USA

• # attendees: approx. 800

3

SIGMOD 2017 @ Chicago, IL

A Top-Down Approach to Achieving

Performance Predictability

in Database Systems

Jiamin Huang, Barzan Mozafari, Grant Schoenebeck, Thomas F. Wenisch

University of Michigan

* Some of the figures in this document are taken from the original literature.

tl;dr

• Stop focusing only on raw performances

(e.g. throughput, mean latency).

• Should be looking at performance predictability as well.

• TProfiler: a performance tracing tool that identifies sources of

latency variance in DBMSs.

• Successfully identifies and mitigates major sources of

performance unpredictability in MySQL, PostgreSQL and VoltDB.

Performance Predictability

• Predictability: Variance

• Why so important?

• DB-backed web services (latency directly affects user experience)

• Service-Level Agreements (“if violated, …result in financial penalties”)

• How bad is it?

Sources of Unpredictability

• Avoidable (internal): caused by internal components of DBMSs

(e.g. I/Os, contention, data structures, algorithms)

• Inherent (external): caused by varying amounts of work

(e.g. “a transaction that updates 10 tables inherently involves more

work than one that updates only one table”)

TProfiler (VProfiler) - Overview

• Given the source codes of a DBMS (w/ explicit annotations of

txns.), identifies sources of latency variance by generating

a call graph called “a variance tree”

• Open-sourced: https://web.eecs.umich.edu/vprofiler/

(VProfiler: a generalized version of TProfiler presented @ Eurosys 2017)

TProfiler - Differentiation

• Existing tools (e.g. DTrace [37]) are ignorant of…

• Transaction-related code sequences inside the codebase

• Mathematical nature of variance - “the variance of a parent function is

always strictly greater than the variance of its children…”

TProfiler- Scoring Function

• Considers both variance and depth within the call hierarchy

• Intuition: “functions deeper in the call graph implement more

specific functionality”, thus are more informative

!

!" !#!$

TProfiler vs DTrace [37]

• DTrace: instruments the binary code rather than the source code,

“use heavy-weight mechanisms to inject generalized

instrumentation code at run-time”

TProfiler vs Naïve Profiler

• Naïve Profiler: decomposes every single non-leaf functions in a

call graph rather than a few important ones.

Case Studies

• Workload: TPC-C

• Analyzed 3 popular open-source DBMSs

• MySQL 5.6.23 (a thread-per-connection model)

• 128 WHs w/ 30 GB buffer pool (high contention on records)

• 2 WHs w/ 128 MB buffer pool (high contention on the buffer pool)

• PostgreSQL 9.6 (a process-per-connection model)

• 32 WHs w/ 30 GB buffer pool

• VoltDB (an event-based server model)

Case Studies – MySQL (128 WHs)

• os_event_wait(): used to put a thread to sleep when it requested

a lock on a record that cannot be granted due to a conflict

([A]: SELECT statements, [B]: UPDATE statements) -> AVOIDABLE

• row_ins_clust_index_entry_low(): inserts a new record into a

clustered index, takes varying code paths based on the state of

the index -> INHERENT

Case Studies – MySQL (2 WHs)

• buf_pool_mutex_enter: acquires the lock of the LRU list that

manages buffer pages -> AVOIDABLE

• btr_cur_search_to_nth_level: traverses an index tree,

varies with the depth -> INHERENT

• fil_flush(): flush redo logs (WAL) -> INHERENT

(can be mitigated with faster I/O devices)

Case Studies - PostgreSQL

• LWLockAcquireOrWait(): acquires a single global lock

(WALWriteLock) to ensure that only one txn. is flushing at a time

-> AVOIDABLE (I/O acceleration or parallel logging)

• ReleasePredicateLocks(): releases predicate locks (for avoiding

phantom problems) -> INHERENT (negligible)

Case Studies - VoltDB

• VoltDB: an event-based system

• Each event waits in a queue before a worker thread is assigned

• 99.9% of latency variance comes from the varying waiting time of

the event queues -> AVOIDABLE

(adjust # worker threads and control the queue size)

Mitigation Ideas

• MySQL

• os_event_wait -> schedule txns. in a variance-aware manner (VATS)

• buf_pool_mutex_enter -> update LRU list lazily (LLU)

• PostgreSQL

• LWLockAcquireOrWait -> parallelize WAL

• VoltDB

• Event queuing time -> adjust # worker threads

Mitigation Ideas

• MySQL

• os_event_wait -> schedule txns. in a variance-aware manner (VATS)

• buf_pool_mutex_enter -> update LRU list lazily (LLU)

• PostgreSQL

• LWLockAcquireOrWait -> parallelize WAL

• VoltDB

• Event queuing time -> adjust # worker threads

VATS vs FCFS - Example

• Protocol: Strict 2-Phase Locking + Wait-Die Deadlock Prevention

write(X)

write(Z)

write(Y)

commit()

write(Z)

write(Y)

write(X)

commit()

write(Y)

write(X)

write(Z)

commit()

T1

T2
T3

Ti
m

e

VATS vs FCFS – FCFS (1/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

T1 T3 T2LX

T3 T2 T1LY

T2 T1LZ

abort T3

T3

VATS vs FCFS – FCFS (2/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

T1 T2LX

T2 T1LY

T2 T1LZ

T3

T3 abort T2

T3

VATS vs FCFS – FCFS (3/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

T1LX

T1LY

T3T1LZ

T3

T3 commit T1

T2

T2

T2

VATS vs FCFS – FCFS (4/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

LX

LY

T3LZ

T3

T3 commit T3

T2

T2

T3

VATS vs FCFS – FCFS (5/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

T2LX

T2LY

T2LZ

commit T2

VATS vs FCFS – VATS (1/3)

VATS: Grants lock to the eldest txns.

T1 T3 T2LX

T3 T2 T1LY

T2 T1LZ

commit T1

T3

VATS vs FCFS – VATS (2/3)

VATS: Grants lock to the eldest txns.

T3 T2LX

T3 T2LY

T2LZ

commit T2

T3

VATS vs FCFS – VATS (3/3)

VATS: Grants lock to the eldest txns.

T3LX

T3LY

T3LZ

commit T3

VATS

• Loss function

• Variance: not suited (adding a large delay to every txn. can achieve

a near-zero variance, but significantly increase mean latency)

• Lp norm: indirectly reduce both mean and variance latencies

(li: latency of txn. i, p: 2 in practice)

• Lp norm of VATS scheduler is optimal against all schedulers

(Theorem 1, proof in Section 5.3)

VATS – Experiment (1/2)

• Workload: TPC-C RS: Randomized Scheduling

VATS – Experiment (2/2)

• SEATS [62]: airline ticketing system (highly contended)

• TATP [68]: caller location system (“not as contended as TPC-C”)

• Epinions [48]: customer reviewing system

• YCSB [30]: no lock contentions

Mitigation Ideas

• MySQL

• os_event_wait -> schedule txns. in a variance-aware manner (VATS)

• buf_pool_mutex_enter -> update LRU list lazily (LLU)

• PostgreSQL

• LWLockAcquireOrWait -> parallelize WAL

• VoltDB

• Event queuing time -> adjust # worker threads

(Relaxed) LRU Buffer Pool in MySQL

• Consists of two sub-lists: young & old

young (5/8) old (3/8)

page outpage in

younger

(Relaxed) LRU Buffer Pool in MySQL

• No precise LRU ordering within the “young” sub-list

P1 P2 P3 P4 P5 P6 P7 P8

T1

buf_pool_mutex_enter();

buf_LRU_make_block_young();

buf_pool_mutex_exit();

(Relaxed) LRU Buffer Pool in MySQL

• No precise LRU ordering within the “young” sub-list

P1 P2 P3 P4 P6 P8

T1

buf_pool_mutex_enter();

buf_LRU_make_block_young();

buf_pool_mutex_exit();

P5

P7

(Relaxed) LRU Buffer Pool in MySQL

• No precise LRU ordering within the “young” sub-list

P7 P1 P2 P3 P4 P5 P6 P8

T1

buf_pool_mutex_enter();

buf_LRU_make_block_young();

buf_pool_mutex_exit();

Lazy LRU Update (LLU)

• The mutex can be a bottleneck when the working sets is larger

than 5/8 of the buffer pool -> Further relax LRU ordering

• Replace the mutex with a spin lock w/ timeout

• If failed to acquire the lock within 0.01 ms, defer the update until

successfully acquire the lock for another update

P7 P1 P2 P3 P4 P5 P6 P8

T1

<= 0.01 ms

P5 P6 deferred LRU updates

Lazy LRU Update (LLU) - Experiment

• Workload: TPC-C (2-WH)

Mitigation Ideas

• MySQL

• os_event_wait -> schedule txns. in a variance-aware manner (VATS)

• buf_pool_mutex_enter -> update LRU list lazily (LLU)

• PostgreSQL

• LWLockAcquireOrWait -> parallelize WAL

• VoltDB

• Event queuing time -> adjust # worker threads

Simple Parallel WAL - Overview

• Uses two hard disks for storing two sets of logs

• Only acquires the global lock when both sets are in use

Disk 1 Disk 2Disk 1

T1 T3T2T1 T3T2

Simple Parallel WAL - Experiment

• Workload: TPC-C

Mitigation Ideas

• MySQL

• os_event_wait -> schedule txns. in a variance-aware manner (VATS)

• buf_pool_mutex_enter -> update LRU list lazily (LLU)

• PostgreSQL

• LWLockAcquireOrWait -> parallelize WAL

• VoltDB

• Event queuing time -> adjust # worker threads

Adjusting # Workers - Experiment

Default # threads: 2

Variance-Aware Tuning (MySQL)

• buffer pool size:

33% (default), 66%, 100%

of the entire DB size

• log flushing policies:

eager flush, lazy flush,

lazy write

Variance-Aware Tuning (PostgreSQL)

• I/O block (log buffer) size: 8 (default), 16, 32, 64 KB

• logs may occupy only a small portion of a large block

Real-World Adoption

• VATS has been adopted by MariaDB, and now is its default

scheduling policy - https://github.com/MariaDB/server/pull/248

Summary

• Performance predictability is getting more important than ever

before for modern (OLTP) workloads.

• TProfiler has identified major sources of performance

unpredictability in MySQL, PostgreSQL, and VoltDB.

• The default FCFS scheduler in MySQL is one major source of

performance unpredictability, and VATS scheduler successfully

improves predictability, as well as mean latencies.

