A Top-Down Approach to
Achieving Performance

Predictapility in Database Systems

Harunobu Daikoku
HPCS Lab., University of Tsukuba

SIGMOD 2017/ - Conterence Qverview

 Date: 5/14 (Sun) ~ 5/19 (Fri)
» Venue: Hilton Chicago, IL, USA

« # attendees: approx. 800

A Top-Down Approach to Achieving
Performance Predictability

in Database Systems

Jiamin Huang, Barzan Mozafari, Grant Schoenebeck, Thomas F. Wenisch

University of Michigan

* Some of the figures in this document are taken from the original literature.

thar

« Stop focusing only on raw performances

(e.g. throughput, mean latency).
« Should be looking at as well.

. a performance tracing tool that identifies sources of

latency variance in DBMSs.

« Successfully identifies and mitigates major sources of

performance unpredictability in MySQL, PostgreSQL and VoltDB.

Performance Predictability

« Why so important?

« DB-backed web services (latency directly affects user experience)
« Service-Level Agreements (“if violated, ...result in financial penalties”)

e How bad is it?

by
=)

0.20F 0.08f
0.8
o) 0.15 S 0.06+
B o6 b3 ?
K} 2 0.10 o 0.04
E 04 E €
= = I (= .
0.2 0.05 0.02
0.0 I/ /| 0.00 0.00
Mean Standard 99th Mean Standard 99th Mean Standard 99th
Latency Deviation Percentile Latency Deviation Percentile

Latency Deviation Percentile

Figure 6: Mean, standard deviation, and 99th percentile latencies in MySQL (left), Postgres (center), and VoltDB (right)

sources of Unpredictability

(internal): caused by internal components of DBMSs

(e.g. I/0s, contention, data structures, algorithms)

« Inherent (external): caused by varying amounts of work
(e.g. “a transaction that updates 10 tables inherently involves more

work than one that updates only one table”)

TProfiler (VProfiler) - Overview

* Given the source codes of a DBMS (w/ explicit annotations of
txns.), identifies sources of latency variance by generating

a call graph called “a variance tree”

Y

[Var(B) Var(bodyA)]
. \ - l
[Cov(B,C) [Cov(B, bodyap, | | Cov(C, bodyA)]

» Open-sourced: https://web.eecs.umich.edu/vprofiler/

(VProfiler: a generalized version of TProfiler presented @ Eurosys 2017)

TProfiler - Differentiation

« Existing tools (e.g. DTrace [37]) are ignorant of...
« Transaction-related code sequences inside the codebase

« Mathematical nature of variance - “the variance of a parent function is

always strictly greater than the variance of its children...”

ﬁ Var(z Xi) = ZVar(Xz) + 22 Z Cov(Xi, X;)

1< <j5<n

Y
[Var(B)] [Var(bodyA)]

PR

[Cov(B,C) J[COV(B, bodya) [Cov(C, bodyA)]

Figure 1: A call graph and its corresponding variance tree
(here, bodya represents the time spent in the body of A).

TProfiler- Scoring Function

« Considers both variance and depth within the call hierarchy

* Intuition: “functions deeper in the call graph implement more

specific functionality”, thus are more informative

specificity(¢) = (height(call_graph) — height(¢))*

score(¢) = speci ficity(¢) Z V(pi)

TProfiler vs DTrace |37]

« DTrace: instruments the binary code rather than the source code,
“use heavy-weight mechanisms to inject generalized

instrumentation code at run-time”

*\/Profiler increase in mean latency
-*‘\/Profiler reduction in throughput /
#-DTrace increase in mean latency
50 =DTrace reduction in throughput

Increase / Reduction (%)

10
Number of child functions
traced simultaneously

TProfiler vs Nalve Profiler

 Naive Profiler: decomposes every single non-leaf functions in a

call graph rather than a few important ones.

2.5E+15
@ *\/Profiler
é 2E+15
Bkint
8 1 5E+15 Naive Profiler
=
8 1E+15
oC
G 5E+14
)
= 0 &A—=
= 1 10 100

Number of child functions
traced simultaneously

Case Studies

 Workload: TPC-C

« Analyzed 3 popular open-source DBMSs

« MySQL 5.6.23 (a thread-per-connection model)
« 128 WHs w/ 30 GB buffer pool (high contention on records)

« 2 WHs w/ 128 MB buffer pool (high contention on the buffer pool)

« PostgreSQL 9.6 (a process-per-connection model)

« 32 WHs w/ 30 GB buffer pool

« VoltDB (an event-based server model)

Case Studies — MySQL (128 WHs)

* os_event_wait(): used to put a thread to sleep when it requested
a lock on a record that cannot be granted due to a conflict

([A]: SELECT statements, [B]: UPDATE statements) ->

* row_ins_clust_index_entry_low(): inserts a new record into a
clustered index, takes varying code paths based on the state of
the index -> INHERENT

Config Function Name Percentage of
Overall Variance
128-WH os_event_wait [A] 37.5%
128-WH os_event_wait [B] 21.7%
128-WH row_ins_clust_index_entry_low 9.3%

Case Studies — MySQL (2 WHSs)

* buf_pool_mutex_enter: acquires the lock of the LRU list that

manages buffer pages ->

* btr_cur_search_to_nth_level: traverses an index tree,

varies with the depth -> INHERENT

« fil_flush(): flush redo logs (WAL) -> INHERENT

(can be mitigated with faster I/0 devices)

2-WH buf_pool_mutex_enter 32.92%
2-WH img_btr_cur_search_to_nth_level 8.3%
2-WH fil_flush 5%

Case Studies - PostgreSQL

* LWLockAcquireOrWait(): acquires a single global lock
(WALWriteLock) to ensure that only one txn. is flushing at a time

-> (1/0 acceleration or parallel logging)

« ReleasePredicateLocks(): releases predicate locks (for avoiding
phantom problems) -> INHERENT (negligible)

Function Name Percentage of Overall Variance

LWLockAcquireOrWait 76.8%

ReleasePredicatelLocks 6%

Case Studies - VoltDRB

 VoltDB: an event-based system
« Each event waits in a queue before a worker thread is assigned

* 99.9% of latency variance comes from the varying waiting time of

the event queues ->

(adjust # worker threads and control the queue size)

Mitigation Ideas

« MySQL
« os_event_wait -> schedule txns. in a variance-aware manner (VATS)

« buf_pool_mutex_enter -> update LRU list lazily (LLU)

« PostgreSQL

* LWLockAcquireOrWait -> parallelize WAL

- VoltDB

» Event queuing time -> adjust # worker threads

Mitigation Ideas

« os_event_wait -> schedule txns. in a variance-aware manner (VATS)

VATS vs FCES - Example

« Protocol: Strict 2-Phase Locking + Wait-Die Deadlock Prevention

write(Z)

write(Z) write(Y)
write(Y)

write(Y) write(X)
write(X)

commit() write(Zz)
commit()

commit()

VATS vs FCFS — FCFS (1/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

Lx

G G abort T,

VATS vs FCFS — FCFS (2/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

0o
Q00
@00

Lx

abort T,

VATS vs FCFS — FCFS (3/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

B0 @
B O O
B O O

commit T,

VATS vs FCFS — FCFS (4/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

! 6 @
BT O

commit T,

VATS vs FCFS — FCFS (5/5)

FCFS (First-Come-First-Served): Grants locks to the txns. at the head

.0 @
Ly 6 T; commit T,
Lza [T,

VATS vs FCFS — VATS (1/3)

VATS: Grants lock to the eldest txns.

VATS vs FCFS — VATS (2/3)

VATS: Grants lock to the eldest txns.

MO0 @
Lve G . commit T,
.0 @O O

VATS vs FCFS — VATS (3/3)

VATS: Grants lock to the eldest txns.

commit T,

VATS

e Loss function

« Variance: not suited (adding a large delay to every txn. can achieve

a near-zero variance, but significantly increase mean latency)

* Lpnorm: indirectly reduce both mean and variance latencies

(I: latency of txn. i, p: 2 in practice)

Lp — ||<l1a e ,ln>||p — (lez|p)1/p
=1

(Theorem 1, proof in Section 5.3)

VATS — Experiment (1/2)

 Workload: TPC-C

RS: Randomized Scheduling

—
c 8 [ZJ VATS
~c B3 RS
n 06 7
L < 4 / /
S’ m
O & / /
- =
© - 2 / / 4 4
xS /
_qc) 0 / Z /
U Mean Variance 99th
n Percentile
System Name of the Original Modification Modified Ratio of overall | Ratio of overall | Ratio of overall
Identified Function|contribution to lines of code| latency variances | 99t" latencies | mean latencies
overall variance or config |(Orig. / Modified)|(Orig. / Modif.)|(Orig. / Modif.)
MySQL os_event_wait 59.2% replace FCFS 189 5.6x 2.0x 6.3x
with VATS

VATS — Experiment (2/2)

YCSB [30]: no lock contentions

Epinions [48]: customer reviewing system

SEATS [62]: airline ticketing system (highly contended)

TATP [68]: caller location system (“not as contended as TPC-C")

Workload| Mean Latency | Variance | 99th Percentile

3 TPCC 6.3x 5.6x 2.0x
S | SEATS 1.1x 1.3x T.1x
£ [TATP 1.2x 1.6x 1.3x
S Avg 2.9x 2.8x 1.5x

_§ Epinions 1.4x 2.6x 1.0x
5| YCSB 1.0x 1.1x 1.1x

O

Mitigation Ideas

 MySQL
« os_event_wait -> schedule txns. in a variance-aware manner (VATS)

« buf_pool_mutex_enter -> update LRU list lazily (LLU)

« PostgreSQL

* LWLockAcquireOrWait -> parallelize WAL

 VoItDB

 Event queuing time -> adjust # worker threads

(Relaxed) LRU Buffer Pool in MySQL

» Consists of two sub-lists: young & old

(<

younger

young (5/8) old 3/8

(Relaxed) LRU Buffer Pool in MySQL

* No precise LRU ordering within the “young” sub-list

buf _pool _mutex_enter();

buf_LRU_make_block_young();

buf_pool_mutex_exit();

(Relaxed) LRU Buffer Pool in MySQL

* No precise LRU ordering within the “young” sub-list

buf_pool mutex_enter();
a buf_LRU_make_block_young();

buf_pool_mutex_exit();

EIEEE 13 K

L gy

~

J

(Relaxed) LRU Buffer Pool in MySQL

* No precise LRU ordering within the “young” sub-list

buf_pool mutex_enter();

a buf_LRU_make_block_young();
buf pool_mutex exit();
HEEEE DR

_ J

Lazy LRU Update (LLU)

« The mutex can be a bottleneck when the working sets is larger
than 5/8 of the buffer pool -> Further relax LRU ordering
* Replace the mutex with a spin lock w/ timeout

« If failed to acquire the lock within 0.01 ms, defer the update until

successfully acquire the lock for another update

m deferred LRU updates

<=0.01 ms

DoooE BEnA |

Lazy LRU Update (LLU) - Experiment

« Workload: TPC-C (2-WH)

—_—
= 2.0 . .
-
-
—~ 1.5} /
(©
S0l 7 /| //
o 1 / /
= / /
O / /
i /
© 0.0 - N v
o Mean Variance 99th
Percentile
System Name of the Original Modification Modified Ratio of overall | Ratio of overall | Ratio of overall
Identified Function|contribution to lines of code| latency variances | 99t" latencies | mean latencies

overall variance

or config

(Orig. / Modified)

(Orig. / Modif.)

(Orig. / Modif.)

MySQL

buf_pool_mutex_enter

32.92%

replace mutex
with spin lock

46

1.6x

1.4x

1.1x

Mitigation Ideas

 MySQL
« os_event_wait -> schedule txns. in a variance-aware manner (VATS)

« buf_pool_mutex_enter -> update LRU list lazily (LLU)

« PostgreSQL

* LWLockAcquireOrWait -> parallelize WAL

 VoItDB

» Event queuing time -> adjust # worker threads

simple Parallel WAL - Overview

« Uses two hard disks for storing two sets of logs

« Only acquires the global lock when both sets are in use

simple Parallel WAL - Experiment

 Workload: TPC-C

— 2 -5 ! T T
~ O
T -= 2.0} :
5
oo 1.5¢ 1
-
Q310 -
O =
= 00.5¢]
o ©
2 0.0 ' , '
Mean Variance 99th
Percentile
System Name of the Original Modification Modified Ratio of overall | Ratio of overall | Ratio of overall
Identified Function|contribution to lines of code| latency variances | 99t" latencies | mean latencies

overall variance or config |(Orig. / Modified)|(Orig. / Modif.)|(Orig. / Modif.)

Postgres| LWLockAcquireOriWait | 76.8% | parallel logging

Mitigation Ideas

 MySQL
« os_event_wait -> schedule txns. in a variance-aware manner (VATS)

« buf_pool_mutex_enter -> update LRU list lazily (LLU)

« PostgreSQL

* LWLockAcquireOrWait -> parallelize WAL

 VoItDB

» Event queuing time -> adjust # worker threads

Adjusting # Workers - Experiment

Default # threads: 2

~~6 ' 122 8 1 16
2]
3 T ., =3 12 &N 24
(C —1 °
Q o
a4t .
o C A—{°
= I: 3| / 1.’
T — .
0P 4 —-
X ¢ 2t /_.. —
o o /: o e 9 / p o
; ; 1 | /— ’ o ’..l /—..0 g
g z 0 /.1_6 " P o |— °
Mean Variance 99th
Percentile
System Name of the Original Modification Modified Ratio of overall | Ratio of overall | Ratio of overall
Identified Function|contribution to lines of code| latency variances | 99t" latencies | mean latencies
overall variance or config |(Orig. / Modified)|(Orig. / Modif.)|(Orig. / Modif.)

VoltDB | [waiting in queue] | 99.9% ladd # of worker threads| 1 | 2.6x | 1.4x | 5.7x

Variance-Aware Tuning (MySQL)

 buffer pool size: * log flushing policies:
33% (default), 66%, 100% eager flush, lazy flush,
of the entire DB size lazy write
a 10 1 66% E 2.0 71 Lazy Flush
ug gl [] 100% g ,;‘ — Lazy Write
0 = .01 |
S~~~ 6_ / - B
] N oa 100 [,
M 4l ? = / 7
2 7 WSos ¢ /]
2 2 ? % o /, %
g 0 /] / ‘('-6 0.0 y /] /
Mean Variance 99th o ' Mean Variance 99th

Percentile Percentile

Variance-Aware Tuning (PostgreSQL)

« 1/0 block (log buffer) size: 8 (default), 16, 32, 64 KB

 logs may occupy only a small portion of a large block

/21 8K L0 32K
3 16K [64K

[
(8}

=
o

-
U

Ratio
(4k / Block Size)

NN N NN

o
o

Méan Variance 9§th
Percentile

Real-World Adoption

« VATS has been adopted by MariaDB, and now is its default
scheduling policy - https://github.com/MariaDB/server/pull/248

MDEV-11039 - Add new scheduling algorithm for reducing talil

latencies (for 10.2)

IS CCel janlindstrom merged 19 commits into MariaDB:18.2 from sensssz:18.2-vats on 24 Oct 2016

(J Conversation 16 -O- Commits 19 [H Files changed 6

sensssz commented on 23 Oct 2016 « edited Contributor

This branch introduces a new scheduling algorithm (Variance-Aware-Transaction-Scheduling, VATS)
for the record lock manager of InnoDB based on MariaDB 10.2. Instead of using First-Come-First-
Served (FCFS), the newly introduced algorithm prefers the eldest transaction. A configuration
parameter (innodb_lock_schedule_algorithm) is introduced for users to choose between VATS and
FCFS (the default one). We've extensively tested this algorithm in many workloads. The algorithm is
very simple, and the changes are very local, but it significantly improves performance (in terms of
average latency and throughput) and predictability (in terms of reduction of tail and quantile
latencies) For more details, please refer to this paper http://arxiv.org/abs/1602.01871

+468 -37 EEEN

Reviewers

janlindstrom v

Assignees

janlindstrom

Labels

None yet

summary

is getting more important than ever

before for modern (OLTP) workloads.

has identified major sources of performance

unpredictability in MySQL, PostgreSQL, and VoltDB.

« The default FCFS scheduler in MySQL is one major source of
performance unpredictability, and VATS scheduler successfully

improves predictability, as well as mean latencies.

