
MiyakoDori: A Memory Reusing Mechanism for Dynamic VM Consolidation

Soramichi Akiyama∗, Takahiro Hirofuchi†, Ryousei Takano† and Shinichi Honiden‡
∗Graduate School of Information Science and Technology,

The University of Tokyo, Tokyo, Japan 113–8656
Email: akiyama@nii.ac.jp

†National Institute of Advanced Industrial Science and Technology, Japan
Email: {t.hirofuchi, takano-ryousei}@aist.go.jp

‡The University of Tokyo, Japan / National Institute of Informatics, Japan
Email: honiden@nii.ac.jp

Abstract—In Infrastructure-as-a-Service datacenters, the
placement of Virtual Machines (VMs) on physical hosts are
dynamically optimized in response to resource utilization of
the hosts. However, existing live migration techniques, used
to move VMs between hosts, need to involve large data
transfer and prevents dynamic consolidation systems from
optimizing VM placements efficiently. In this paper, we propose
a technique called “memory reusing” that reduces the amount
of transferred memory of live migration. When a VM migrates
to another host, the memory image of the VM is kept in the
source host. When the VM migrates back to the original host
later, the kept memory image will be “reused”, i.e. memory
pages which are identical to the kept pages will not be
transferred. We implemented a system named MiyakoDori that
uses memory reusing in live migrations. Evaluations show that
MiyakoDori significantly reduced the amount of transferred
memory of live migrations and reduced 87% of unnecessary
energy consumption when integrated with our dynamic VM
consolidation system.

Keywords-virtualization; live migration; IaaS cloud;

I. INTRODUCTION

Many companies use Infrastructure-as-a-Service datacen-
ters instead of having their own servers to build their
software systems with the help of the recent emergence
of virtualization techniques [1]. One of main features of
an IaaS datacenter is that the virtual machines (VMs) can
easily move between physical machines (hosts) by using
live migration techniques [2], [3]. Using live migration
techniques, a VM can migrate from one host to another
without any interruption. One possible application of live
migration is for management purposes [4], [5]. Several
studies have been conducted on optimal placements of VMs
in a datacenter. For example, Goiri et al. developed a VM
placement policy that reduces the energy consumption of
a datacenter by consolidating VMs into a small number
of hosts by using a live migration technique [6]. Another
example is a dynamic VM consolidation system developed
by us [7]. In this system, we use post-copy live migration

This work was supported in part by KAKENHI (23700048) and
JST/CREST ULP.

[8] to achieve a quicker consolidation and better energy
efficiency than with pre-copy live migration.

Live migration techniques are used to optimize VM
placements. However, these techniques tend to lead heavy
network traffic, as existing live migration techniques transfer
the entire memory image of the target VM. This makes a
migration to take long time and delays the completion of the
VM placements optimization. The execution of live migra-
tion is considered as a penalty parameter in an optimization
problem of VM packing [6]. Our dynamic VM consolidation
system does not impose such a delay as it uses post-copy
live migration. However, a post-copy live migration slows
down the performance of a target VM for a certain time
after a migration.

In this paper, we propose a memory reusing mechanism to
reduce the amount of transferred data in a live migration. In
a dynamic VM consolidation system, a VM might migrate
back to the host it has once executed. The memory image
of the VM is left on the host when it migrates out from the
host and the image will be reused when the VM migrates
back to the host later. The fewer amount of data contributes
to a shorter migration time and greater optimization by VM
placement algorithms. For example, our experiments show
that the energy consumption of a dynamic VM consolidation
system is reduced by integrating memory reusing.

The rest of this paper is organized as follows. In Section
II, we explain how live migration techniques are used and
their problems from the view point of dynamic VM consol-
idation. Section III explains the concept of memory reusing.
Section IV describes our implementation of memory reusing,
called MiyakoDori. In Section V we evaluates MiyakoDori
with realistic applications. Section VI and Section VII
include a further discussion and review of related work.
Section VIII concludes this paper.

II. LIVE MIGRATION FOR DYNAMIC VM
CONSOLIDATION

A. Dynamic VM consolidation

Our dynamic VM consolidation system reduces the en-
ergy consumption of datacenters by using post-copy live



Figure 1. Dynamic VM consolida-
tion: when idle

Figure 2. Dynamic VM consolida-
tion: when busy

migration technique [7], [8]. In this system a datacenter
consists of two types of physical hosts: shared servers and
dedicated servers. The VMs that are not performing heavy
computations are consolidated into a small number of shared
servers. In the other case, VMs that are active are distributed
to dedicated servers to leverage the performance of these
VMs. Figure 1 and Figure 2 illustrate a datacenter that has
four VMs. When all the VMs are idle, they are consolidated
into a shared server, shown in Figure 1. Figure 2 shows the
result of VM3 and VM4 requiring a higher performance:
they are both migrated to dedicated servers. Note that
dedicated means this scheduling algorithm explicitly assigns
a physical host to an active VM to ensure VM performance.

B. Problems of Existing Live Migration Techniques

In this section, we explain the problems of existing
live migration techniques when applied to dynamic VM
consolidation. The main problem of existing live migration
techniques [2], [3] is that they transfer large amount of
data to migrate a VM. For example, to migrate a VM with
1GB memory, we need to transfer at least 1GB of data.
Transferring large amount of data causes two problems:

1) The migration causes memory accesses that degrade
the performance of applications running in the VM by
8% to 30% [3], [9].

2) Consolidating many VMs into a host at once congests
the network of the host [10] and delays the consoli-
dation.

A dynamic consolidation aggressively optimizes VM place-
ments with frequent live migrations. The data transfer cost
of a live migration will make a significant impact on the
efficiency of dynamic consolidation systems. Therefore, we
try to reduce the amount of transferred data in a live
migration.

III. MEMORY REUSING DURING MIGRATIONS

In this section, we propose memory reusing, a mechanism
to reduce the amount of transferred data of a live migration
in dynamic VM consolidation. As described in Section II, a
dynamic VM consolidation system executes live migrations
many times. During these migrations, a VM might migrate
back to a host on which it has been executed before. When
a VM transit from an idle state to a busy state, the VM must

Figure 3. Write access pattern of TPC-C workload: X-axis and Y-axis
represent the guest-physical page number and the time when the page is
updated for the first time, respectively. Points with a Y value of 0 are blue,
points with values larger than 0 are red. Note that 0 for Y value means that
the memory page was never updated during the 30 minutes of workload.

be moved from a shared server to an idle server. On the other
hand, when the VM becomes idle again, it is moved to the
shared host. For instance, VM3 in Figures 1 and 2 makes a
round trip between the shared server and its dedicated server.
By caching the memory image of the VM beforehand, the
entire memory image transferring can be avoided.

A. Write Access Pattern of a Compound Workload

We assume that even when a VM is actively running, a
substantial number of memory pages will remain unchanged.
Unused memory pages and the ones keeping read-only data
of workloads will not be updated. In order to ensure this
assumption, we executed the TPC-C [11] workload in a VM
and recorded the memory write accesses pattern. TPC-C is
a workload that simulates transaction processing system and
includes CPU utilization, memory access, and IO.

We modified the QEMU/KVM [12], [13] to record the
write access pattern to the memory. QEMU has a functional-
ity named dirty page tracking, which detects the first update
of a memory page and sets the corresponding bit of the dirty
page table to 1. Our modified version of QEMU records the
time when each memory page is updated for the first time
by reading the dirty page table every T seconds.

We executed the workload for 30 minutes on a VM with
1GB memory and 1 virtual CPU, and set T to 10. Figure 3
shows the results of this experiment. For example, a red
point with a Y value of 600 indicates that the page was
updated for the first time between 590 seconds and 600
seconds after the beginning of the workload.

The results show that Y values are scattered in a wide
range, which indicates that memory reusing would success-
fully reduce the overhead of a live migration. For example,



Figure 4. Basic idea of memory reusing: The upper row illustrates the
first migration from host A to host B, in which memory reusing cannot be
applied. The lower row illustrates a migration back from host B to host A,
in which the memory image of the VM is kept on host A and unchanged
memory pages are not transferred.

suppose the VM migrates to another host just after the begin-
ning of the workload and migrates back to the original host
600 seconds later. In this case, all the memory pages with
Y values between 600 and 1800 need not to be transferred:
they are not updated until at least 600 seconds after the
beginning of the workload. For example, in this evaluation
17% of the points are between Y=600 and Y=1800.

B. Basic Idea of Memory Reusing

The basic idea of memory reusing is to keep the memory
image of a VM on a host in order to reuse it when the VM
migrates from another host at a later stage.

Figure 4 illustrates the basic idea. (1) The upper row
illustrates a VM that migrates from host A to host B.
Memory reusing is not applied to this migration because
it is the first migration of the VM to host B. Therefore, all
the memory pages of the VM must be transferred on the
network. At this time, we keep the memory image of the
VM on host A in order to reuse it later. (2) The lower row
illustrates the VM when it migrates back from host B to
host A. Some memory pages of the VM have been updated
since the memory image has been kept on host A. However,
many memory pages remain unchanged (as shown before in
this section) and they are not transferred from host B to host
A.

IV. IMPLEMENTATION: MIYAKODORI

We implemented the memory reusing mechanism and
integrated it into QEMU. We call this system MiyakoDori1.
In this section, the design policy and the implementation of
MiyakoDori are described.

1MiyakoDori is a migrating bird in Japanese.

A. Live Migration with Memory Reusing

Each memory page of a VM has a generation, which
indicates how many times the page has been updated since
the boot of the VM. When a VM boots, generations of all
the memory pages are set to zero. We call the set of all
generations of a VM as the generation table of the VM. A
generation server manages the generation tables of all the
VMs. We use the tuple (V, A) to refer to the generation table
of VM V associated with host A.

Figure 5 illustrates the behavior of MiyakoDori when
a VM V is migrated from host A to host B for the first
time. Note that, at this stage memory reusing is not utilized
because no memory image is kept yet.

1) Stop temporarily VM V on host A.
2) Detect memory pages that have been updated since the

boot time of VM V by using dirty page tracking.
3) Send updated page numbers to the generation server,

which propagates the changes to (V, A).
4) Resume VM V. This pause is less than a second

because the data transferred in (3) is quite small, as
describe in Section VI

5) Migrates VM V to host B by using a normal live
migration mechanism, but keeps the memory image
on host A for possible later reuses.

Figure 6 illustrates the behavior of MiyakoDori when a
VM V is migrated back from host B to host A. The differ-
ences from the previous procedure is emphasized. Figure 5
does not include explanations for the same procedure as in
Figure 6.

1) Stop temporarily VM V on host B.
2) Detect memory pages that have been updated since the

last migration to host B by using dirty page tracking.
3) Send updated page numbers to the generation server,

which propagates the changes to (V, B).
4) The generation server compares (V, A) with (V, B)

to find reusable pages, i.e. the pages that have the
same generations in the two generation tables.

5) The generation server sends reusable page numbers
to the hosts.

6) Resume VM V.
7) Migrates VM V to host A, without transferring

reusable memory pages.

B. Design Policy

The design of MiyakoDori is based on a client-server ar-
chitecture. A central management server collects generation
values from all physical hosts and controls VM placement of
a datacenter. We call the central management server as gen-
eration server in above explanations of our implementation.
This architecture allows us to develop advanced placement
algorithms, which exploit cache availability on each host as
an input parameter. Further discussion will be made in our
future work.



Figure 5. First migration of a VM: The memory image is cached on the
source host. The generation table is updated and MiyakoDori knows later
which pages can be reused.

Figure 6. Migration back to a host on which the VM has once been
executed: All the memory pages that have different generations in the source
and the destination are copied. Other pages are reused and do not need to
be copied.

C. Dirty Page Tracking

Dirty page tracking is a functionality provided by the
original QEMU/KVM. A user-level function of QEMU
detects via dirty page tracking which memory pages are
updated. In x86 and x64 architectures, when a memory page
is updated, the CPU sets the dirty bit of the corresponding
page table entry (to 1). Dirty page tracking acquires this bit
and makes it available to user-level functions. Since the page
table entry is touched only once when the first update to the
page occurs, there is practically negligible overhead in using
dirty page tracking permanently, as describe in Section VI.

V. EXPERIMENTS

We evaluated MiyakoDori with application benchmarks
and integration with our dynamic VM consolidation. In
the application benchmarks, we used four benchmarks and
evaluated the amount of data transferred in a pre-copy
live migration with/without MiyakoDori. In addition, we
integrated MiyakoDori into our dynamic VM consolidation

Table I
SPECIFICATIONS OF THE HARDWARE AND THE SOFTWARE

CPU Intel Xeon X5460 (4 cores)
Memory 8 GB

Disk 250GB HDD
Network GigaBit Ethernet NIC

OS Debian GNU/Linux 6.0
kernel Linux 2.6.32
KVM kvm-kmod-2.6.38.6

QEMU 0.13.0

Table II
WORKLOADS FOR APPLICATION BENCHMARKS

Name Intensity Detailed description
Busy Loop CPU Infinite busy loop

Apache Network, IO Read 1,024 static HTMLs
(256KB each) with 100Mbps

Video IO Transcode mpeg2 video into ogg
theora format using vlc media player

TPC-C (Compound) DB access benchmark that simulates
transactions of an online shop

system [7] and estimated the reduction of energy consump-
tion achieved by memory reusing.

A. Application benchmarks

In this benchmarks, we evaluated to what extent Miyako-
Dori can reduce the amount of transferred memory in a
single live migration. We used three servers for two hosts
and a generation server. The specifications of used hardware
and software are shown in Table I. We set up a VM with 1GB
of RAM and one virtual CPU. We used Ubuntu 10.10 server
as a guest OS. Disk images are located on the generation
server, accessible from the VM on any host via Network
File System (NFS).

The evaluations are performed as follows:

1) Launch a VM V on host A
2) Run a workload on VM V for N minutes
3) Migrate VM V from host A to host B
4) Run the workload on VM V for another N minutes
5) Migrate VM V from host B to host A

We executed this procedure with/without MiyakoDori and
compared the amount of transferred memory in the step 5).
Using MiyakoDori, the memory pages updated in the latter
N minutes are transferred. However, all the used memory
pages are transferred without MiyakoDori. For each test
case, we used one of the workloads described in Table II
and set variable N to either 5, 10, or 15.

The amount of transferred memory in each test cases is
shown in Figures 7, 8, 9, and 10. The X-axis is the interval
between two migrations (= N minutes) and the Y-axis is
the amount of transferred memory in MB. Note that the
maximum values of the Y-axis are not the same in all the
figures. A bar in right-hand side in each interval (labeled



Figure 7. Results for Busy Loop Figure 8. Results for Apache

Figure 9. Results for Video Figure 10. Results for TPC-C

as naive) describes the result with memory reusing and left-
hand side (labeled as ours) is for the case without memory
reusing. In the following, we discuss the results of each test
case:

Busy Loop: In this workload only a small number of
memory pages were updated. Therefore, more than 95% of
memory pages could be reused.

Apache: This workload consumes more memory than
Busy Loop but the ratio of reused memory pages to non-
reused pages is similar to Busy Loop. The reason is that
reading files does not updates many memory pages, even
if the total size of read files is large. The guest operating
system kept all static HTML files during this experiment.
The memory pages used for this file cache were not updated.
The results show that memory reusing is suitable for a
workload that has large static data.

Video: In this test set, the largest amount of memory is
consumed compared with the other three workloads. The
difference between Video and Apache is that Video writes

Table III
TOTAL MIGRATION TIME IN THE

BUSY LOOP TEST CASE

N naive ours
5 min. 7 sec <2 sec
10 min. 7 sec <2 sec
15 min. 7 sec <2 sec

Table IV
TOTAL MIGRATION TIME IN THE

APACHE TEST CASE

N naive ours
5 min. 16 sec 2 sec
10 min. 16 sec 2 sec
15 min. 16 sec 2 sec

Table V
TOTAL MIGRATION TIME IN THE

VIDEO TEST CASE

N naive ours
5 min. 22 sec 16 sec
10 min. 34 sec 31 sec
15 min. 35 sec 31 sec

Table VI
TOTAL MIGRATION TIME IN THE

TPC-C TEST CASE

N naive ours
5 min. 28 sec 10 sec
10 min. 32 sec 13 sec
15 min. 33 sec 15 sec

large amount of data (i.e. converted video). The operating
system caches the written file in the memory, therefore
many memory pages were updated in this workload. The
results show that memory reusing cannot be utilized well
in workloads that produce large output data in the memory.
Though the merit of memory reusing was small in Video
workload, some memory pages were still reused. These
pages are used by the operating system (e.g. text segment
of loaded program).

TPC-C: This workload is a compound workload of CPU,
memory and IO. The memory access patterns of the work-
load are complex, as mentioned in Section III. Even though
79% of the memory are used for the workload (that is, 79%
of points have larger values than 0 in Figure 3), more than
50% of the pages were reused. The results clearly indicate
that memory reusing is beneficial for compound workloads
similar to TPC-C (i.e. transaction system).

Tables III, IV, V, and VI show total migration time. The
expression “<2 sec” in Table III means that the results
differ from case to case but less than 2 seconds. Note
that a total migration time is the time period between the
start of the migration and the time when all the states of
the VM are successfully transferred. The total migration
time is proportional to the amount of transferred data, since
transferring the memory image account for the largest part
of a live migration.

The evaluations show that:

1) Memory reusing can reduce the amount of transferred
memory in a live migration with all of the four
workloads.

2) Workloads that have small working set (e.g. Busy
Loop) or large read-only data (e.g. Apache) are es-
pecially suitable for memory reusing.

3) Workloads that produce large data (e.g. Video) does
not take advantage of memory reusing.

4) Total migration time is also reduced in proportion to
the amount of transferred data.



Table VII
TOTAL MIGRATION TIME AND REUSED MEMORY SIZE IN DYNAMIC VM

CONSOLIDATION

Migration 1 2 3 4 5 6
w/ MiyakoDori 18 17 18 17 18 17

(seconds)
w/o MiyakoDori 19 5.6 0.1 0.3 0.1 0.5

(seconds)
Reused (bytes) 0 1.3G 1.9G 1.9G 1.9G 1.9G

B. Integration with our dynamic VM consolidation system

We integrated MiyakoDori into our dynamic VM con-
solidation system [7] and evaluated how memory reusing
contributes to a real situation.

We used three hosts and four VMs for the evaluation.
The hosts are a dedicated server, a shared server and a
management. A management node gathers load information
of all the VMs and hosts and commands VM replacement to
the hosts if needed. The specifications of physical hosts are
the same with the micro evaluation (Table I). Three of four
VMs are static VMs consume 80% of the CPU core assigned
to it. The last VM is a migrating VM and configured to have
1900MB of memory. The migrating VM runs Apache web
server and has 5,000 static HTML files with 256KB each.
We applied dynamic VM consolidation in following settings.

Workload: The HTML files are read with two differ-
ent speeds, 60 files/sec (≈ 120Mbps) and 10 file/sec (≈
20Mbps). Two speeds are alternately applied with 5-minute
interval. That is, first the speed is 10 files/sec, and then it
is switched to 60 files/sec 5 minutes later, and this cycle is
repeated for 30 minutes (3 times).

Scheduling Policy: Three static VMs never change their
CPU usage nor the host on which they run. The migrating
VM changes its CPU usage in response to the speed of the
read and moves as follows:

1) to the dedicated server if its CPU usage is over 80%
2) to the shared server if its CPU usage is under 30%

The reason why we move the migrating VM with 80% of
CPU usage is that the total CPU usage of four VMs reaches
320%, which is 80% of the total CPU capacity of the shared
server (= 400%, as the shared server has 4 CPU cores).

The migrating VM makes a round trip in response to
switches of reading speed of the HTML files. We evaluated
the total migration time and the amount of reused memory
on each live migration in the 30-minute workload, with and
without MiyakoDori. The results are shown in Table VII. We
executed the workload 3 times and took the average value.

In migrations 2, 4, and 6, the migrating VM moves
from the dedicated server to the shared server and the
dedicated sever can be suspended after the migrations. The
expression “after the migrations” means that the dedicated
server must be powered on until all the state of the VM
is transferred to the shared server. Suppose an optimal

situation where live migration has no time overhead and the
dedicated server can be powered off just after the migration
started. In this situation, the time duration in which the
dedicated server must be powered on is 15 minutes (the
half of 30 minutes workload). We can estimate the amount
of unnecessary energy consumption E (i.e. extra energy
consumption compared to the optimal situation) by:

E = α
∑

i∈{2,4,6}

Ti (1)

where Ti is the total migration time of the ith migration and
α is energy consumption per second of the dedicated server.
The reduction ratio of the unnecessary energy consumption
by memory reusing, R, is calculated by:

R =
Ewithout − Ewith

Ewithout
(2)

=
51− 6.4

51
(3)

≈ 87% (4)

where Ewithout and Ewith are estimated by equation (1) and
Table VII.

In this evaluation, we integrated MiyakoDori into our dy-
namic VM consolidation system and estimated the reduction
ratio of the unnecessary energy consumption. The result
show that memory reusing significantly reduces the unneces-
sary energy consumption by shortening total migration time
of live migrations.

VI. DISCUSSION AND FUTURE WORK

A. Discussion about Overhead

Even though MiyakoDori introduces two types of over-
head into existing systems, we claim that in the real world
this overhead is negligible for the following reasons:

Memory Access Slowdown: Setting the dirty bit of
a memory page requires the page table to be checked in
each memory access even if the virtual address of the page
is cached on the Translation Look-aside Buffer. Therefore,
dirty page tracking slows down memory accesses. In our
experiments, dirty page tracking slows down only the first
access to a page for approximately 20%, but no slowdown
was observed in the completion time of the CG benchmark
from NAS Parallel Benchmarks [14].

Network Overhead: MiyakoDori requires extra data to
send updated page numbers to the generation server and to
send reusable page numbers to the hosts. This overhead is
very small because we only need 1 bit to represent whether
a page is updated or not. Suppose that a VM has 4GB of
memory, then we need to send only 4 GB ÷ 4 KB/page ×
1 bit/page = 1 Mbits for updated page numbers (the same
calculation is also applied for reusable page numbers).

CPU Downtime: The virtual CPU of a VM needs
extra suspension by MiyakoDori, as described in Section IV.
However, this suspension is less than a second because the



data transferred during the suspension is enough small, as
described above.

B. Future Work

Further Analysis of Memory Access Patterns: As
described in Section III, write access patterns to the memory
have certain characteristics that depend on the workload. We
believe that by analyzing memory access patterns, including
reads and writes, live migration techniques can be further
improved. For example, analysis of memory access patterns
of a workload indicates the assumed size of the working set
of the workload [15].

Memory Cache Management: Current implementation
leaves all the pages of all the memory images, except when
the host OS swaps them out. However, a memory image
includes many unnecessary pages. For instance, a page that
is updated on another host is no longer needed because the
page cannot be reused. Other types of unnecessary pages can
be detected by further analysis of memory access pattern of
the workload. For example, a memory page that has strong
possibility of update in a near future does not need to be
cached.

VII. RELATED WORK

In this section, we briefly review related approaches that
try to reduce the amount of transferred data of live migration.
In [16], the authors use run-length compression to reduce
the amount of transferred data. In a pre-copy live migration,
a page could be transferred more than twice because of
memory updates during the transfer. This study claims that
even if a page is dirtied the difference between the current
version and the previous version of the page is not large. A
bit-wise xor of two versions is a bit sequence that includes
long running 0s. Run-length compression technique is used
to compress the bit sequence because it shows a high
compression rate against a long running 0s and calculation
cost for the compression is very small. The authors of
study [17] also compress the memory pages but utilize
similarity of two different pages, as well as two versions
of an identical page. According to [17], in the first phase
of a pre-copy live migration 25% of used pages have an
identical page to it and thus does not need to be transferred.

Study [18] transfers execution logs of a target VM instead
of the its memory image. This reduces the amount of
transferred data in a live migration because a execution log
does not contain unnecessary information to restore the state
of the VM.

Post-copy live migrations [8], [19], [20] address overhead
of a live migration in a different way. In this kind of
migration, the states of the virtual CPU are migrated before
transferring its memory image. Memory pages of the VM
are copied on-demand when they are read/written by the
already migrated CPU. A post-copy migration is superior to
pre-copy one in following two aspects.

1) A memory page is transferred only once because there
is no memory update during the transfer.

2) Transferring the virtual CPU is done immediately
while it waits for transferring the whole memory
image in a pre-copy live migration.

A drawback of a post-copy live migration is that it degrades
performance of the VM due to page faults occurred by on-
demand memory copies. Countermeasures for this drawback
are page pre-fetching using locality of memory accesses [8],
[19] and clustering of memory page characteristics enabled
by analyzing page table entries and OS specific information
[21].

We used our dynamic VM consolidation system [7] to
evaluate memory reusing mechanism in a real setting. More
aggressive relocations to reduce energy consumption are
studied in AASH [22] or HASS [23]. These studies change
assignments of processors to processes using modified kernel
scheduler. When a process is in active phase a high per-
formance and energy-consuming processor is suitable while
low performance processor is appropriate when the process
waits for memory accesses or IO completions a lot. This
idea can be extended to assignments of hosts to VMs using
live migration technique, if a live migration can be executed
with a very low cost.

VIII. CONCLUSION

In this paper we proposed memory reusing, which reduces
the amount of transferred memory of a live migration in the
context of dynamic VM consolidation systems by keeping
memory images of VMs in hosts and skipping transfer
of unchanged memory pages. To verify the feasibility of
memory reusing, we implemented a prototype system named
MiyakoDori. Evaluations showed MiyakoDori reduces the
amount of transferred memory and total migration time of a
live migration and thus reduces the energy consumption of
a dynamic VM consolidation system. Future work includes
further analysis of memory access patterns and memory
cache management in order to improve the memory reusing
mechanism.

REFERENCES

[1] O. Agesen, A. Garthwaite, J. Sheldon, and P. Subrahmanyam,
“The evolution of an x86 virtual machine monitor,” SIGOPS
Opereting Systems Review, vol. 44, pp. 3–18, Dec. 2010.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation,
2005, pp. 273–286.

[3] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent
migration for virtual machines,” in Proceedings of the 2005
USENIX Annual Technical Conference, 2005, pp. 391 – 394.



[4] V. Soundararajan and J. M. Anderson, “The impact of
management operations on the virtualized datacenter,” in
Proceedings of the 37th annual International Symposium on
Computer Architecture, 2010, pp. 326–337.

[5] Distributed resource scheduling, distributed power
management of server resources. [Online]. Available:
http://www.vmware.com/products/drs/

[6] I. Goiri, F. Julia, R. Nou, J. L. Berral, J. Guitart, and J. Tor-
res, “Energy-aware scheduling in virtualized datacenters,” in
Proceedings of the 2010 IEEE International Conference on
Cluster Computing, 2010, pp. 58–67.

[7] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “Reac-
tive consolidation of virtual machines enabled by postcopy
live migration,” in Proceedings of the The 5th International
Workshop on Virtualization Technologies in Distributed Com-
puting, 2011, pp. 11–18.

[8] T. Hirofuchi, H. Nakada, S. Itoh and S. Sekiguchi, “En-
abling instantaneous relocation of virtual machines with a
lightweight vmm extension,” in Proceedings of the 10th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2010, pp. 73–83.

[9] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live
migration of multiple virtual machines with resource reser-
vation in cloud computing environments,” in Proceedings of
the 2011 IEEE Conference on Cloud Computing, 2011, pp.
267–274.

[10] S. Kikuchi and Y. Matsumoto, “Performance modeling of
concurrent live migration operations in cloud computing sys-
tems using prism probabilistic model checker,” in Proceedings
of the 2011 IEEE Conference on Cloud Computing, 2011, pp.
49–56.

[11] Tpc-c. [Online]. Available: http://www.tpc.org/tpcc/

[12] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
Proceedings of the 2005 USENIX Annual Technical Confer-
ence, 2005, pp. 41 – 46.

[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“kvm: the linux virtual machine monitor,” in Proceedings of
the 2007 Linux Symposium, 2007, pp. 225 – 230.

[14] NAS PARALLEL BENCHMARKS. [Online]. Available:
http://www.nas.nasa.gov/Resources/Software/npb.html

[15] A. Garg, “Looking inside memory - tooling for tracing
memory reference patterns,” in Proceedings of the 2010 Linux
Symposium, 2010, pp. 63–74.

[16] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation
of delta compression techniques for efficient live migration of
large virtual machines,” in Proceedings of the 7th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments, 2011, pp. 111–120.

[17] X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting data
deduplication to accelerate live virtual machine migration,”
in Proceedings of the 2010 IEEE International Conference
on Cluster Computing, 2010, pp. 88–96.

[18] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration
of virtual machine based on full system trace and replay,”
in Proceedings of the 18th ACM International Symposium
on High Performance Distributed Computing, 2009, pp. 101–
110.

[19] M. R. Hines and K. Gopalan, “Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic
self-ballooning,” in Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments, 2009, pp. 51–60.

[20] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan, “Snowflock: Rapid virtual machine
cloning for cloud computing,” in Proceedings of the 4th ACM
European Conference on Computer Systems, 2009, pp. 1–12.

[21] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi,
M. Hiltunen, A. Lagar-Cavilla, and E. de Lara, “Kalei-
doscope: Cloud micro-elasticity via vm state coloring,” in
Proceedings of the Sixth Conference on Computer Systems,
2011, pp. 273–286.

[22] V. Kazempour, A. Kamali, and A. Fedorova, “AASH: an
asymmetry-aware scheduler for hypervisors,” in Proceedings
of the 6th ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, 2010, pp. 85–96.

[23] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova,
N. Perez, Z. F. Huang, S. Blagodurov, and V. Kumar, “HASS:
a scheduler for heterogeneous multicore systems,” SIGOPS
Operating Systems Review, vol. 43, pp. 66–75, April 2009.


