
Reliable Reverse Engineering of Intel DRAM
Addressing Using Performance Counters

Christian Helm
The University of Tokyo

Tokyo, Japan
christian@eidos.ic.i.u-tokyo.ac.jp

Soramichi Akiyama
The University of Tokyo

Tokyo, Japan
akiyama@ci.i.u-tokyo.ac.jp

Kenjiro Taura
The University of Tokyo

Tokyo, Japan
tau@eidos.ic.i.u-tokyo.ac.jp

Abstract—The memory controller of a processor translates the
physical memory address to hardware components such as mem-
ory channels, ranks, and banks. This DRAM address mapping
is of interest to many researchers in the fields of IT security,
hardware architecture, system software, and performance tuning.
However, Intel processors are using a complex and undocumented
DRAM addressing. The addressing can be different for every
system because it depends on many aspects such as the pro-
cessor model, DIMM population on the motherboard, and BIOS
settings. Thus an analysis for every individual system is necessary.
In this paper, we introduce an automatic and reliable method
for reverse engineering the DRAM addressing of Intel server-
class processors. In contrast to existing approaches, it is reliable,
measurement errors are unlikely to occur, and can be detected
if they occur. Our method mainly relies on CPU hardware
performance counters to precisely locate the accessed DRAM
component. It eliminates the problem of wrong attribution that
is common in timing based approaches. We validated our method
by reversing engineering the DRAM addressing of a diverse set
of Intel processors. This set includes Broadwell, Haswell, and
Skylake micro-architectures, with various core counts, DIMM
arrangements, and BIOS settings. We show the correctness of the
determined addressing functions using micro-benchmarks that
access specific DRAM components.

Index Terms—DRAM, Reverse Engineering, Address Mapping,
Performance Counters

I. Introduction

The memory subsystem of a modern computer is complex.
The memory is split into different channels to provide higher
bandwidth. Organization of DRAM chips in bank groups
and banks provide the opportunity for pipelining requests.
This has led to increased throughput of DRAM systems over
the years without a significant performance increase in the
single DRAM cell [1]. The memory controller must interface
with those different DRAM components and address them
individually. The memory controller receives requests to load
data at specific physical addresses. From the physical address,
the DRAM controller must determine the channel, rank, bank,
row, and column in which the data is stored. The definition
of how addresses are translated is called DRAM address
mapping.
If the DRAM address mapping is known, it enables a wide

range of applications. In hardware architecture and system soft-

This work is partially supported by a project commissioned by the New
Energy and Industrial Technology Development Organization (NEDO).

ware research, approaches for better usage of memory chan-
nels and banks are being explored. For example, application-
aware memory channel partitioning [2], adapted page sizes for
better usage of row buffers [3], efficient use of new hybrid
memory technology [4], effects of unreliable memory [5],
or DRAM layout aware memory allocators [6], [7], [8]. For
the evaluation of such new concepts, simulated hardware is
often used. If the address mapping is known, such a system
can be implemented and evaluated using real processors and
applications. The few cases where evaluations are done using
real hardware rely on specific processor models where the
address mapping is documented or require manual reverse
engineering effort. For example, Chandru and Mueller [8]
use a Tilera processor, Pan et al. [7] use an AMD Opteron
6128 processor, and PALLOC [6] is implemented on a Xeon
W3530 and Freescale P4080. The above-mentioned concepts
also showed performance gains which we cannot utilize on
other machines without knowing the address mapping.
Researchers in IT security are also interested in the DRAM

address mapping to evaluate their concepts. Covert commu-
nication channels across CPUs were demonstrated by Pessl et
al. [9]. A variation of Rowhammer [10] attacks was introduced
by Gruss et al. [11]. And Song et al. show a method for hiding
rootkits [12].
The address translation is done in hardware, it is different

for every system, and it is mostly undocumented except for a
few specific processor models. For example, the documentation
of the outdated Intel Xeon 5500 contains a description of the
address mapping [13]. However, for newer generations of Intel
processors, this information is not published. Up to a certain
extent, the mapping is configurable in hardware. At the startup
of the system, the BIOS reads the DIMM configuration and
programs the configuration registers in the processor. After
the initialization, the configuration cannot be changed. The
mapping can also be influenced by the BIOS settings. For
example, the activation of on-chip NUMA domains changes
the addressing [14]. Thus the address mapping depends on
many factors and may be different for every system. A general
addressing function, for example for a specific processor
generation, does not exist.
We introduce an automatic and reliable method for reverse

engineering the DRAM addressing on Intel processors. Our
tool can automatically find the addressing functions of mem-

ory channels, ranks, bank groups, and banks. It is available
online at https://github.com/helchr/reMap. The main idea is
to directly and reliably measure the number of accesses to
each component (e.g., bank), unlike existing approaches that
leverage unreliable numbers such as access latency or the
number of bit-flips by rowhammer. With a smart selection of
probed addresses, we can determine the addressing functions
in a short time. Because we use boolean algebra to resolve the
addressing functions, we can differentiate measurement errors
from insufficient sampling. In the case of asymmetric DIMM
population, we gather additional information from configura-
tion registers. Our tool supports server-class processors with a
large amount of memory and also supports asymmetric DIMM
population. We demonstrate that we can reverse engineer the
address mapping on an Intel Haswell, two Broadwell, and a
Skylake system. They are equipped with up to 2TB of RAM
and include a system with asymmetric memory channel popu-
lation. Based on benchmarks that access certain components of
the DRAM using the reverse engineered address mapping, we
confirm that our method can find the correct address mapping
on recent Intel server-class processors.

II. DRAM Fundamentals
Modern DRAM is organized in a hierarchical arrangement

of channels, ranks, bank groups, and banks as shown in
Figure 1.

Figure 1: High level DRAM system organization.

A processor has a memory controller for interfacing the
DRAM system. There can also be multiple memory controllers
within one CPU. Each of them can have multiple channels.
Often, only the total number of channels, but not the separate
memory controllers are mentioned in hardware descriptions.
E.g. the system in Figure 1 could be seen as a processor with
2 controllers, each with two channels or a processor with four
channels. The memory channels can be accessed in parallel.
It is the highest degree of parallelism in a DRAM system.

Each channel consists of one or more ranks. A rank consists
of multiple banks. Each bank can be used at the same time

that other banks are being used. DDR4 RAM consists of 16
banks that are organized in four bank groups, each with four
banks. A bank consists of rows and a row buffer as shown in
Figure 2. A row is a group of storage cells that are activated
in parallel.

Figure 2: A DRAM bank consists of rows and a row buffer.

A row can only be accessed from the row buffer. The
row buffer is essentially a cache that can hold a single row.
There are three different states upon a row access. First, if
the requested row is cached, it can be accessed immediately.
Second, if the row buffer is empty, the requested row needs
to be loaded into the buffer before the access is possible.
This increases the access latency. Third, if the row buffer is
occupied with a row different from the requested row, the
currently cached row needs to be written back first. Then
the requested row can be loaded into the buffer. This further
increases the access latency. A DRAM row is also called a
DRAM page.
The memory controller in the CPU is responsible for

enabling and addressing those components based on the in-
coming physical memory address. First, the memory controller
selects a channel based on the address mapping and uses
the channel’s own address and data lines. The ranks and
banks within a channel share the same address and data
lines. The correct rank must be activated by using additional
rank and bank activation signals. Again, the mapping function
defines which rank and bank is activated when accessing
a physical address. Except for the configuration at system
startup, the mapping of physical addresses to components is
static. The address mapping influences how well parallelism
and pipelining opportunities can be used [15, Section 13.3]. If
we want to implement a custom mapping on existing hardware,
we need to know the hardware mapping function and use
the physical addresses that result in an access of the desired
component.
In multi CPU systems, the DRAM can be organized as

NUMA aware or NUMA unaware (i. e. interleaved) mode.
In NUMA aware mode, the OS sees each processor with its
own distinct DRAM, and the OS (or application) can explicitly
access the memory of a CPU. In the NUMA interleave mode,
the OS sees only one memory space and the hardware will
interleave accesses to all memories with a similar address
mapping as for the other DRAM components.

III. Related Work

Seaborn [16] shows manual reverse engineering of the
address mapping of a Sandy Bridge processor. First, the author

https://github.com/helchr/reMap

uses information about the DIMM configuration from the
Serial Presence Detect (SPD) ROM stored on the DIMMs
themselves to build a hypothesis about the mapping. Then,
the author uses a rowhammer tool that causes bit flips in
the RAM. Such bit flips can be caused in neighboring rows
that are in the same bank. This approach has the following
disadvantages. First, the sample generation is not accurate.
Bit flips are not guaranteed to occur and may also occur in
rows that are not next to each other but further apart. The
author describes that this occurred in the experiment and it
required manual detection and removal of the outliers. Second,
there is no algorithmic method for determining the addressing
function. The author manually analyzes the reported addresses
of successful bit flips to determine the addressing functions.
While it works for this relatively old and simple PC-class
processor, it is hardly possible to do a manual analysis on a
more modern processor which has more complicated hashing
and region based mappings.

A timing-based approach is introduced by Pessl et al. [9].
It is based on the principle that a row buffer hit results in
a lower access latency than a row buffer conflict. They use
pairs of addresses and repeatedly access the pairs. If both
addresses in a pair are in the same bank, alternating accesses
will lead to a relatively long delay due to row buffer conflicts.
First, these address pairs and timing results are collected. In
a second step, the linear xor functions are recovered from
the data using a brute force search. They present results for
several systems including Sandy Bridge, Ivy Bridge, Haswell,
and Skylake, as well as Qualcomm and Samsung mobile
processors. They have at most two channels and two ranks.
The main disadvantage of this approach is the inaccurate
attribution of physical addresses to components. It is based
on measuring the timing of accesses, which can be easily
disturbed. For example, the processing of other instructions
in the pipeline may introduce additional delay. The memory
controller is another source of inaccuracies because it can
re-schedule DRAM access requests. This changes the timing
and can change row buffer access behavior. Despite our best
efforts, we could not reproduce the results on our machines.
We suspect that such inaccuracies in the measurement lead to
the inconsistent results that we have observed.

A performance counter based approach for L3 caches is
presented by Maurice et al. [17]. The L3 cache is typically split
into slices. The slices are addressed in a similar way as the
DRAM components. Each slice has separate access counters,
thus for each physical address, it can be determined which
slice was accessed. Their approach uses two addresses that
differ only by one bit. If the output (accessed cache slice) is
the same for both addresses, the bit does not play a role in the
result. If the output is different, then this bit is included in the
calculation of the cache slice index.

The address mapping is configurable, and there are hardware
registers that store the configuration. Reverse engineering
of those configuration registers is a method introduced by
Hillenbrand [18]. The approach is to change the DIMM
configuration of the servers, and then to monitor the changes in

the configuration register space. The result is documentation
of registers that goes beyond what is officially available by
Intel. This study covers Intel Haswell and Broadwell systems.

IV. Methodology
Our reverse engineering approach has two steps. In the first

step, pairs of the physical address and accessed component
are collected. This is done by picking an address from a pool
and then finding the component that this address accesses. The
component is identified using performance counters. After this
process, there is a list of physical addresses and the component
that the address accessed. In the second step, address mapping
functions are calculated from this list of samples. The steps
are summarized in Algorithm 1. The remainder of this section
explains the individual steps.

Algorithm 1 Pseudocode of the reverse engineering method.
Allocate pool of memory
while not enough addresses do

Pick a virtual address from the pool
Get the physical address
for all components do

Set up measurement for component
Repeatedly access the address
if counter value > number of accesses then

Record pair of physical address and component
end if

end for
end while
Calculate mapping function from samples

A. Memory Allocation
The DRAM address mapping is based on the physical

address. If we can control individual bits of the physical
address, we can use a structured address selection method,
such as the one described in Section IV-B. Only the bits that
express offset within a page frame directly translate to bits of
the physical address. The bits for the frame number are not
under our control. Thus we increase the page size to 2MB,
which leads to 21 bits of the physical address being under the
direct control of our tool.

B. Address Selection
Theoretically, it is possible to use random addresses from

a large pool to gather samples. However it would require
the collection of many samples to get enough coverage to
reconstruct the addressing function. We want to find out for
every bit of the physical address if it influences the accessed
DRAM component. Thus addresses that differ in only one bit
would allow us to directly judge the influence of this one bit
on the result. To generate such addresses we use the following
mechanism. First, we take a random address from the allocated
memory pool. The next address is generated by changing the
least significant bit. The following addresses are generated by
reversing the last bit change and then changing the next more

significant bit. In other words, a shifted bitmask with a single
one is xored with the initial address. Once we run into the next
page frame or out of the boundaries of the address pool, we
choose a new random address and start again with modifying
the least significant bit.

The memory controller takes physical addresses as the input
of the mapping function. Thus we need to gather physical
addresses samples. Through the /proc/self/pagemap interface,
we can translate the virtual addresses to physical addresses.

C. Performance Counters
For each physical address, we need to know which com-

ponent is accessed. We use performance counters for each
component to measure if they are accessed. Each channel
has its own Performance Monitoring Unit (PMU) with its
own counters. By selecting the right PMU we count the
number of transfers on this channel. For each rank, there is
a separate performance event with a separate umask for each
bank or bank group. The event definitions can be found in
the Intel uncore performance monitoring guide [19]. Each
measurement checks one specific channel, rank, and bank.
We cycle through all possible components until we found
one where the counter value is equal or higher than the
number of programmed DRAM accesses. The performance
counters that we use require root access or the perf event
paranoid flag to be set accordingly. The use of performance
counters is a significant difference from a previous timing
based approach [9]. The measurement is more reliable and
practically eliminates attribution errors. A disadvantage of
this method is that only CPUs which have the appropriate
performance counters are supported.

D. Enforcing DRAM Accesses
For the measurement, it is required to repeatedly access

a certain address, and every access must cause a load from
DRAM that we can count. Registers and caches exist to avoid
such redundant loads from DRAM. Thus we use the code
in Figure 3 with cache line flush and fence instructions that
enforce a load from DRAM with every access to the same
address.

volatile uint64_t ∗p = (volatile uint64_t ∗) addr;
for (unsigned int i = 0; i < NUM_ACCESS; i++)
{
_mm_clflush((void∗)p);
_mm_lfence();
∗p;
_mm_lfence();

}

Figure 3: The C code that enforces memory loads from DRAM
when repeatedly accessing the same address.

The performance counters we use count for the whole
system, not just for our application. Thus co-running appli-
cations or transfers by the OS cause noise. We need to set the
NUM_ACCESSES variable high enough so that those other

accesses do not disturb our measurements. If the number of
accesses is too high, it causes unnecessary delays. In our
experience, on a system that is not running other applications
than the default OS services, 2000 or more accesses allow
accurate measurements. On a system that executes other tasks
in the background, a higher value may be required.

E. Computing Addressing Functions

The list of samples that contain physical address and ac-
cessed component is not useful on its own. We need to extract
an addressing function from those samples. We introduce a
novel method to resolve the bits of the physical address that
are used for addressing components. It reports exact results
for used, unused, and unconfirmed bits, as well as other types
of errors.

1) Constructing an Equation System: All previous work [9],
[16], [17], [18] indicates that the mapping either uses a single
bit or a xor combination of multiple bits of the physical address
to calculate the component index. Because of the limitation to
xor functions, this problem can be formulated as a boolean
equation system consisting of two operations (xor , and). The
idea for the construction of the equation system is as follows.
The input is a list of samples as shown in Figure 4.

Figure 4: A list of physical addresses and the accessed com-
ponent.

We split all the collected samples into a one-bit component
address. E. g. If there are four memory channels, two bits are
needed to address those four channels. We duplicate the list of
physical addresses and build two lists of samples, one for the
first bit of the channel address and one for the second bit of
the channel address. Each of the bits of the physical address
could be used for the calculation of the component address bit.
Thus we add a switch (the boolean and operation) to every
bit. This switch can turn the usage of this bit on or off. If there
are multiple bits used, we know that they are combined using
the xor operation. Thus we add a xor between every bit. The
resulting structure is visualized in Figure 5.

Figure 5: The list of samples converted into equations with bit
switches.

The formalization of this concept as an equation system is
shown in Equation 1.

x0,0 ∗ b0 ⊕ x0,1 ∗ b1 ⊕ · · · ⊕ x0,n ∗ bn = c0
x1,0 ∗ b0 ⊕ x1,1 ∗ b1 ⊕ · · · ⊕ x1,n ∗ bn = c1
...
xm,0 ∗ b0 ⊕ xm,1 ∗ b1 ⊕ · · · ⊕ xm,n ∗ bn = cm

(1)

In Equation 1 the ∗ symbol denotes the and operation and ⊕
symbol is the xor operation. There are n unknown parameters
b that express if a bit is used or not. And there are m physical
address samples taken with their individual address bits x.
The c on the right-hand side represents the one-bit component
address.

2) Solving the Equation System: The equation system can
be solved in the F2 space, where xor is an addition and
and is a multiplication, with any equation system solver.
We use Gaussian elimination. The usage of established linear
equation system mathematics brings the advantage of a clear
differentiation of the results.

The equations system either has a solution, is partially
solvable, or it has no valid solution. If it is not solvable,
there are contradicting equations. This can happen in case of
wrong measurements or if a more complex address mapping,
such as one with multiple regions, is not correctly considered.
Theoretically, it could happen that wrong measurements lead
to an equation system that is solvable and produces wrong
results. However, this would require a systematic error in
the measurement. For example, if a performance counter
always reports accesses to a different component than the one
specified in the measurement setup. Such an error is unlikely to
occur, and we never observed such a case in our experiments.

If there is a solution or a partial solution, for every bit of
the physical address there are three possible states. A bit can
be used for calculating the index, a bit can be unused, or it is
unknown if a bit is used. The unknown state happens if there
is a partial solution with dependent equations, and there are
no samples that cover this specific bit.

This accurate reporting is an advantage over the brute
force solver by Pessl et al. [9] because it can identify wrong
measurements and differentiate it from unknown bits caused
by too few samples.

F. Region Based Mapping
In the case of asymmetric DIMM population or if the

number of DIMMs in a channel is not a power of two, the
hardware uses more complex region based address mapping.
For example, a two-bit wide channel address, calculated using
the xor combination of bits, targets four different channels. A
space of three different channels can not be expressed. Thus
a region based mapping is used in hardware. The regions are
address ranges. For each region, a different addressing function
can be used. The regions help to get a balanced distribution
of requests over all of the three channels. The regions are
defined in registers in the memory controller and set up during
system startup. Those registers are mostly undocumented, but

Hillenbrand [18] provides the locations and decoding for Intel
Haswell and Broadwell systems.
The address sample collection works the same, no matter if

regions are used or not. For the calculation of the addressing
functions, additional steps are necessary. First, we read the
region limit addresses from the registers. Then we group all
captured addresses into their respective region. Finally, for
each of the regions, the addressing functions can be computed
as described in Section IV-E.
As already reported previously [18], on some systems,

Linux is not able to access the PCI extended configuration
space. The channel region definitions are within an address
range that is always accessible. But for the ranks, the registers
may not be accessible. We experienced this issue on an Intel
Haswell system that is equipped with 6 ranks per channel.
A workaround is to use a modified Linux kernel [18]. On
our two Broadwell systems, complete configuration space was
accessible.
Hillenbrand [18] only describes the registers of Broadwell

and Haswell based systems. For Skylake and its successors, the
register layout changed and is poorly documented. We cannot
read the registers to find the regions for channels or banks. On
those newer generation systems, our approach only works for
a balanced power of two DIMM population.

V. Results

We reverse engineered the address mapping on four different
systems and confirm that the obtained addressing functions are
correct.

A. Hardware

Table I lists the basic facts of the server systems. In the
following, the servers will be referenced by their name, which
is in the leftmost column of Table I.
All of the systems are NUMA aware but do not use on-chip

NUMA. This means that the OS sees the different processors
with their own explicitly addressable memory but cannot see
the different memory controllers within one processor. All of
the systems are equipped with DDR4 RAM. DDR4 RAM
always has four bank groups, each with four banks. Every
system uses only a single type of DIMM. For Arcturus, Rigel,
and Spica, the configuration is the same on all sockets. On
Comet, the memory setup differs for socket 0 and socket 1.
On socket 0, only three out of four channels are active due
to a hardware defect. On socket 1, all of the four channels
are active. Rigel is a Skylake system, which supports up to
six memory channels. Our system is equipped with DIMMs
on four of the six channels. The rightmost column ranks in
Table I is the number of ranks per channel.
All of the experiments were executed on machines running

Ubuntu 18.04, and the benchmarks were compiled with gcc
7.4. We configured our tool to use a 20GB address space that
is allocated using 2MB pages. We execute 2000 accesses per
test and capture a total of 400 address samples.

Table I: The hardware we used for testing the reverse engineering method.

Name Architecture CPUs Board DRAM
Speed DIMMs Number

of Channels
Number
of Ranks

Arcturus Broadwell 2x E5-2699v4 Supermicro X10DGQ 2400Mhz Micron 36ASF4G72LZ-2G3B1 4 4
Comet Haswell 2x E5-2699v3 Dell 0CNCJW 1867Mhz SK Hynix HMA84GL7MMR4N-TF 3 and 4 6
Rigel Skylake 2x Xeon 8176 Supermicro X11DPG-QT 2667Mhz Samsung M386A8K40BM2 4 4
Spica Broadwell 4x E7-8890v4 Supermicro X10QBL-4 1600Mhz Samsung M386A8K40BM1 4 8

B. Addressing Functions
We use a 0 based numbering for address bits. I. e. the bit

number 0 is the least significant bit of an address followed by
bit 1 and so on. The bank addressing can either be interpreted
as 16 different banks, which need 4 bits for addressing. Or it
can be seen as four bank groups, each with four banks. Thus
the bank group addressing bits are the same as two of the bank
addressing bits. There are separate performance counters for
the 16 banks and the four bank groups. The reverse engineering
is done separately and we report the results for all 16 banks
and the four bank groups individually.

Table II shows the addressing function of Arcturus. Chan-
nels and banks use xor hashing. The pattern of the mapping
is similar to what is reported by Pessl et al. [9]. However, the
individual bits used for addressing are different. It highlights
the need to study the mapping for every system individually.

Because Comet is equipped with 6 ranks per channel,
a region based mapping is used for the ranks. The rank
configuration registers are not accessible using a standard
Linux kernel. Thus we cannot resolve the rank addressing and
subsequently cannot resolve the bank addressing. On socket 0,
there is a region based mapping due to the use of 3 channels.
It is shown in Table IV. In the first address region, we did not
record any memory accesses. We suspect that it is a reserved
hardware area that is not mapped to the DRAM. The second
region uses interleaving between the two controllers. Within
the first memory controller, the channels are interleaved. The
second controller needs no further interleaving because only
one channel is available. The third region only uses the first
controller and interleaves it’s two channels. The used bits are
different from the second region. To the best of our knowledge,
this is the first time a region based mapping was successfully
reverse engineered.

Spica and Rigel do not use xor hashing. Instead, only single
bits are used as shown in Table V and Table VI. With such
a configuration, a performance decreasing imbalanced use of
channels, ranks, or banks can easily occur if strided memory
accesses happen to all fall into the same channel, rank, or
bank.

If we equip Rigel with enough DIMMs for all six channels,
a region based mapping will be used. Because we do not
know the configuration registers for this architecture, reverse
engineering is not possible.

C. Speed of Reverse Engineering
In addition to the reliability of the measurements, timing

based approaches also have the disadvantage of long pro-
cessing time. We compared the time required for reverse

Table II: DRAM address mapping of Arcturus

Component Index Bit Physical Address Bits

Channel 0 8 ⊕ 12 ⊕ 14 ⊕ 16 ⊕ 18 ⊕ 20 ⊕ 22 ⊕ 24 ⊕ 26
1 7 ⊕ 17

Rank 0 15
1 16

Bank

0 6 ⊕ 24
1 21 ⊕ 25
2 22 ⊕ 26
3 23 ⊕ 27

Bank Group 0 6 ⊕ 24
1 21 ⊕ 25

Table III: DRAM address mapping of Comet socket 1

Component Index Bit Physical Address Bits

Channel 0 8 ⊕ 12 ⊕ 14 ⊕ 16 ⊕ 18 ⊕ 20 ⊕ 22 ⊕ 24 ⊕ 26
1 7 ⊕ 17

Table IV: DRAM channel address mapping of Comet socket 0

Address Region Component Physical Address Bits
0 to 1984M - -

1094M to 198592M Controllers 7 ⊕ 17
Channels in
Controller 0

8 ⊕ 12 ⊕ 14 ⊕ 16 ⊕ 18
⊕20 ⊕ 22 ⊕ 24 ⊕ 26

198592M to 296896M Channels in
Controller 0 7 ⊕ 12 ⊕ 14 ⊕ 16 ⊕ 18 ⊕ 20

Table V: DRAM address mapping of Rigel

Component Index Bit Physical Address Bits

Channel 0 8
1 9

Rank 0 15
1 16

Bank

0 6
1 21
2 22
3 23

Bank Group 0 6
1 21

Table VI: DRAM address mapping of Spica

Component Index Bit Physical Address Bits

Channel 0 6
1 7

Rank
0 8
1 9
2 10

Bank

0 11
1 12
2 13
3 14

Bank Group 0 11
1 12

engineering of our approach and the timing based approach
of Pessl et al. [9], even though it did not report the correct
result. We did the experiment on Spica. It has a large DRAM
size of 512GB per socket, and it has 512 addressable sets
(16 banks × 8 ranks × 4 channels). Our tool finds the correct
addressing for all sets in ten out of ten tests in an average time
of 1:04 minutes. In contrast, the timing based approach needs
over 51 hours for the complete reverse engineering process.
We assume the optimal case when the mapping is found in
the first try, which often does not work due to inaccuracies in
the timing measurement.

VI. Usage of Addressing Functions
To confirm that the recovered address mappings are cor-

rect, we implement micro benchmarks that reproduce known
performance effects of bank and channel usage.

Based on addressing functions shown in Section V-B, we
implement a benchmark that can access specific memory com-
ponents. The benchmark first allocates a large array. Then it
calculates the array indexes that are on the specified channels,
ranks, and banks. Finally, it accesses the calculated array
indexes in a parallel for loop. The number of data accesses
stays constant, regardless of the configured channels, ranks,
banks, and threads.

A. Channels
Figure 6 shows the measured bandwidth on the four different

channels of Spica. In this experiment, the benchmark accesses
only one memory channel. This can be clearly seen in the
diagram. We measure a bandwidth of about 10GB/s on one
of the channels but almost no activity on the other channels.
Figure 7 shows the bandwidth on Comet with two out of four
channels in use. Figure 8 shows the speedup over the sequential
version when only one, two, three, or all four memory channels
are used. As expected, the speedup is limited by the number
of available channels. This experiment was executed on Spica.
These experiments demonstrate that our determined addressing
functions for the channels are correct.

 0

 2000

 4000

 6000

 8000

 10000

 0 1 2 3 4 5 6 7

B
a
n
d
w

id
th

 (
M

B
/s

)

Time (s)

Channel
0
1
2
3

Figure 6: The time resolved bandwidth measured on Spica
when memory accesses are limited to one specific channel.

 0

 2000

 4000

 6000

 8000

 10000

 0 1 2 3 4 5 6 7

B
a
n
d
w

id
th

 (
M

B
/s

)

Time (s)

Channel
0
1
4
5

Figure 7: The time resolved bandwidth measured on Comet
when memory accesses are limited to two channels.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5 10 15 20

S
p
e
e
d
u
p

Threads

Used Channels
0

0,1
0,1,2

0,1,2,3

Figure 8: Parallel speedup on Spica when the usage of memory
channels is restricted.

B. Banks
It is known that co-running applications or multi-threaded

programs, where concurrent threads access different address
regions, interfere with each other, and cause increased row
buffer conflicts [8], [20], [21]. We implemented a micro-
benchmark that reproduces this phenomenon and an optimized
version that uses a fixed thread-to-bank assignment. The
benchmark reads an array using 16 threads. We limit the
access on one channel and one rank so that there are 16 banks
available to use. The original version simply accesses the array
indexes in ascending order using a loop that is parallelized with
OpenMP. Thus each thread accesses different array locations.
In the optimized version, we use the same parallel for loop,
but each thread accesses only a specific bank. E. g. thread 1
only accesses data stored on bank 1, while at the same time
thread 2 only accesses bank 2. We measure the row buffer
access status (hit, empty, conflict) as described in the Intel
documentation [22].
Figure 9 shows the page hit, page empty, and page conflict

ratios measured over time of the original version. We see
that, in the original version, after the initialization phase, the
page conflicts increase and the page hits decrease. Over 40%
of the row accesses result in a page conflict. In contrast, in
the optimized version, we can eliminate most of the conflicts
and get a high page hit ratio by mapping each thread to a
designated bank, as shown in Figure 10.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

Pe
rc

e
n
t

Time (s)

pageHit
pageEmpty

pageConflict

Figure 9: Row buffer hit, empty, and conflict ratio measured
over time on Arcturus when using a standard multi-threaded
array access.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

Pe
rc

e
n
t

Time (s)

pageHit
pageEmpty

pageConflict

Figure 10: Row buffer hit, empty, and conflict ratio measured
over time on Arcturus when using a fixed thread-to-bank
assignment.

VII. Conclusion
We present a new automatic method to reverse engineer

Intel’s undocumented DRAM addressing. With the use of
performance counters, we achieve reliable DRAM component
attribution. Our evaluation shows that we can resolve the
correct address mapping on recent Intel machines with a
diverse set of memory configurations. In the future, we want
to apply this method to other types of processors.

References
[1] Graham Allan. Ddr4 bank groups in embedded applications.

https://www.synopsys.com/designware-ip/technical-bulletin/ddr4-
bank-groups.html.

[2] S. P. S. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda, “Reducing memory interference in multicore systems
via application-aware memory channel partitioning,” Proceedings of
the Annual International Symposium on Microarchitecture, MICRO, pp.
374–385, 2011.

[3] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,
and A. Davis, “Micro-pages: Increasing DRAM efficiency with locality-
aware data placement,” in International Conference on Architectural
Support for Programming Languages and Operating Systems - ASPLOS,
2010, pp. 219–230.

[4] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu,
“Row Buffer Locality-Aware Data Placement in Hybrid Memories,”
SAFARI Technical Report, vol. 005, 2011. [Online]. Available:
http://www.ece.cmu.edu/{~}safari/tr/tr-2011-005.pdf

[5] S. Akiyama, “A lightweight method to evaluate effect of approximate
memory with hardware performance monitors,” IEICE Transactions on
Information and Systems, vol. E102D, no. 12, pp. 2354–2365, 2019.

[6] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in Real-Time Technology and Applications. IEEE, 2014,
pp. 155–166.

[7] X. Pan, Y. J. Gownivaripalli, and F. Mueller, “TintMalloc: Reducing
Memory Access Divergence via Controller-Aware Coloring,” Proceed-
ings - 2016 IEEE 30th International Parallel and Distributed Processing
Symposium, IPDPS 2016, pp. 363–372, 2016.

[8] V. Chandru and F. Mueller, “Reducing NoC and memory contention for
manycores,” Lecture Notes in Computer Science, vol. 9637, pp. 293–305,
2016.

[9] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” USENIX Secu-
rity Symposium, 2016.

[10] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” Proceedings -
International Symposium on Computer Architecture, pp. 361–372, 2014.

[11] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in JavaScript,” in Lecture Notes in Com-
puter Science, vol. 9721, 2016, pp. 300–321.

[12] W. Song, H. Choi, J. Kim, E. Kim, Y. Kim, and J. Kim, “Pikit: A new
kernel-independent processor-interconnect rootkit,” Proceedings of the
25th USENIX Security Symposium, pp. 37–51, 2016.

[13] Intel Corporation, “Intel Xeon Processor 5500 Series Datasheet, Volume
2,” 2011.

[14] Fujitsu, “FUJITSU Server PRIMERGY & PRIMEQUEST Memory
Performance of Xeon scalable processor (Skylake-SP) based Systems,”
2018.

[15] B. Jacob, S. W. Ng, D. T. Wang, and M. Schuette, Memory systems:
cache, DRAM, disk. Morgan Kaufmann, 2010.

[16] M. Seaborn. How physical addresses map to rows and banks in dram.
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-
map-to-rows-and-banks.html.

[17] C. Maurice, N. le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse Engineering Intel Last-Level Cache Complex Addressing Us-
ing Performance Counters,” in Lecture Notes in Computer Science, vol.
9404, 2015, pp. 48–65.

[18] M. Hillenbrand, “Physical Address Decoding in Intel Xeon v3/v4 CPUs:
A Supplemental Datasheet,” 2017.

[19] Intel Corporation, “Intel® Xeon® Processor Scalable Memory Family
Uncore Performance Monitoring Reference Manual,” Tech. Rep. July,
2017.

[20] W. Mi, X. Feng, J. Xue, and Y. Jia, “Software-hardware cooperative
DRAM bank partitioning for chip multiprocessors,” Lecture Notes in
Computer Science, vol. 6289 LNCS, no. 2005, pp. 329–343, 2010.

[21] H. Huang, L. Liu, F. L. Song, and X. Y. Ma, “Architecture supported
synchronization-based cache coherence protocol for many-core proces-
sors,” Jisuanji Xuebao/Chinese Journal of Computers, vol. 32, no. 8,
pp. 1618–1630, 2009.

[22] Intel Corporation, “Intel Xeon Processor E5-2600 Product Family Un-
core Performance Monitoring Guide,” no. March, 2012.

http://www.ece.cmu.edu/{~}safari/tr/tr-2011-005.pdf

	Introduction
	DRAM Fundamentals
	Related Work
	Methodology
	Memory Allocation
	Address Selection
	Performance Counters
	Enforcing DRAM Accesses
	Computing Addressing Functions
	Constructing an Equation System
	Solving the Equation System

	Region Based Mapping

	Results
	Hardware
	Addressing Functions
	Speed of Reverse Engineering

	Usage of Addressing Functions
	Channels
	Banks

	Conclusion
	References

