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Abstract—Fixed-point arithmetic is widely used because of its
efficiency in latency, area, and power consumption. However,
determining the number of bits assigned to each variable while
considering the balance of efficiency and the error of the program
output is challenging. To ease this burden, we (1) propose a
new method that estimates the statistical error distributions of
the program output when fixed-point arithmetic is used, and (2)
implement an error estimation system for HLS programs based
on our method. The main idea is to apply an error propagation
model based on program derivatives to the distributions of data
and their errors. This achieves estimating not only the range of
the errors but also the statistical aspects of them without feeding
a lot of input data to the program. Furthermore, the input data
and their errors can be tweaked at the distribution level, allowing
an easy-to-conduct robustness analysis of chosen precision. Our
experiments show that our method can estimate error distribu-
tions for various operators and a realistic application well, and
the estimated results can be used for different types of analyses
that help the user determine precision in fixed-point arithmetic.

Index Terms—Fixed-point Arithmetic, Error Estimation, Pro-
gram Derivatives

I. INTRODUCTION

Fixed-point arithmetic is widely used when losing computa-
tional accuracy in return for efficiency is acceptable. Examples
include, but not limited to, FPGA application designs [1], arti-
ficial intelligence [2], and specialized hardware for industrial
applications [3]. For example, Cabello et al. [4] use fixed-
point arithmetic on an FPGA to implement Gaussian Filter,
whose output is typically displayed to human eyes. They show
that the look-up table usage is 24.2× smaller than that of
the floating-point counterpart with less than 5% Root Mean
Squared Error in the final images when 11-bit fixed-point
arithmetic is used.

Choosing the right precision for fixed-point numbers used
in fixed-point arithmetic is key for efficiency. The precision of
a fixed-point number refers to the number of bits assigned to it
(i.e., bit-width). It must be chosen small enough not to cancel
the efficiency, but large enough not to incur too much error.
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Fig. 1. Relative overhead of delay, area, and power of fixed-point multipliers
that calculate z = x * y with various precision. Label i j k represents that the
precision of x, y, and z are i, j, and k, respectively (every fourth of them are
shown for brevity). The baseline of the comparison is 12 12 12.

An error means the difference between the output of a fixed-
point program and the ideal (or mathematical) result. Fig. 1
shows the overhead of fixed-point multipliers (z = x * y)
with various precision. We use FreePDK’s 45 nm process
for synthesis and simulation and the power simulations were
conducted on 1,000,000 random inputs. The operating condi-
tions for synthesis were typical (a 1.00 process factor, 1.1 V
power supply, and 25°C operating temperature). All multipliers
were synthesized and optimized using the default compiler
options. Synopsys Power Compiler was used to estimate power
consumption from switching activity interchange format files
generated from the Synopsys VCS. The precision of x, y, and
z are swiped between 12 bits and 15 bits, while the number
of bits assigned to the integer part is fixed to 4. For example,
12 13 14 in the graph means that the fractional parts of x, y,
and z are assigned 8 bits, 9 bits, and 10 bits, respectively. The
vertical axes show the overhead compared to the 12 12 12
case. The efficiency of this multiplier differs by as much as



80+% depending on the precision.
Determining the right precision is key but difficult because

the errors are both code- and data- dependent, and the sta-
tistical aspects of errors must be taken into account. To be
concrete, we break down the difficulty into the following four
challenges:

1) The errors cannot be statically estimated because they
depend not only on the program code but also on the
input data.

2) The errors must be estimated based on a large amount
of real data rather than on a small amount of sampled
data to not miss the long-tail of errors.

3) The statistical aspects of errors differ largely from a
normal (gaussian) distribution and from each other in
different precision.

4) The number of possible precision is large in hardware
circuit designs and FPGA configurations, unlike CPU
and GPU programs.

To tackle these challenges, we propose a new method to
estimate the error distribution of a program’s output for given
precision. A distribution (formally defined in Section III-A)
of a set of data represents the statistical aspects of them, and
the user can calculate not only the average and the standard
deviation but also the probability that the data falls into any
given range. Our method estimates the distributions of errors
by modeling how errors propagate based on derivatives of
operators used in the target program.

Our method solves the aforementioned challenges as fol-
lows. First, it considers both the program code and the input
data to estimate errors. Second, the input to our method is
distributions of input variables created from a large amount of
real data. This enables our method to properly take the long-
tail of errors into account. Third, it outputs distributions of the
errors so that the user can investigate the statistical aspects
of them to determine precision. This includes calculating the
probability that the error falls into a certain range and tweaking
the distributions of values/errors of the input to consider
extreme-case scenarios (e.g., when the error of input data is
much higher than expected). Fourth, our method is faster than
repeatedly executing the target program normally to estimate
distributions of errors. This is because our method manipulates
distributions of variables directly based on the program code.

The contributions of this paper are as follows.

• We are the first to apply program derivatives and distri-
bution estimation for determining the precision of fixed-
point arithmetic as far as we know.

• We give concrete algorithms to estimate errors of pro-
grams that consist of +, *, and sin operators.

• Based on the algorithms, we implement an error esti-
mation system that targets High-Level Synthesis (HLS)
programs written in C++.

• With the estimation system, we show that the error dis-
tributions of the aforementioned operators and a realistic
application can be estimated well.

• We also provide two types of analyses on errors estimated
by our system; i.e., the probability that they fall within 1σ
from the average (σ denotes the std. dev.), and how they
change when the errors of input variables are increased.

II. RESEARCH BACKGROUND

A. Details of the Challenges

Here we elaborate on the details of the challenges in
determining the precision for fixed-point arithmetic.

1) Code- and data- dependency: The errors depend not
only on the program code but also on the input data. Let
us consider a simple program y = 1.1b * x and we
assign 1 bit to the fractional parts of x and y. The error
of y depends on the value of x, as well as of course on
the program code. For example, when x = 1.0b, the
error of y is 0 as it can be accurately calculated. On the
other hand, when x = 1.1b, the error of y is 0.01b
as the ideal result of 1.1b * 1.1b is 10.01b and it
is truncated to 10.0b because of the precision of y.

2) Long-tail of errors: Estimating errors based only on
few representative data may overlook the long-tail of
errors. Khudia et al. [5] applied loop perforation, another
efficient but error-prone computing method, to calculate
the brightness of images. They report that the average
error was 5% while the maximum was 23%, and only 2
out of 800 images caused 20+% error (Figure 3 in [5]).

3) Statistical aspects of errors: Determining precision
only from the average, maximum value, and minimum
value of errors cannot capture statistical aspects of them.
This is because the distributions of errors can be far
from a normal distribution, and even worse, look very
different from precision to precision. For example, the
right-hand side of Figure 9 shows distributions of errors
of a program y = sin(x) in two different precision.
They are far from a normal distribution and from each
other. In the top-right case, the probability that the
error is contained within 1σ from the average is 0.600,
which is largely different from the same probability for
a normal distribution (0.683).

4) Large configuration space: Arbitrary precision can be
specified for fixed-point numbers in designing circuits
and FPGA applications. This large configuration space
requires an efficient method to estimate the error for
each precision, which is a different story from CPUs and
GPUs that only support a handful of precision options.

B. Existing Methods and Drawbacks

We describe three existing methods to estimate errors of
programs using fixed-point arithmetic and point out how they
do not solve the challenges.

1) Sampling-based: This method selects a few represen-
tative input data and determines the precision based on
the errors incurred for the selected data. Although it is
significantly faster than the other two methods, it cannot
consider the long-tail of errors. Li et al. [6] models errors
of variables with their average and standard deviation,



which restricts their model to only estimate the standard
deviation of applications.

2) Range-based: This method calculates the maximum
possible error for given precision by mathematical the-
ories such as interval arithmetic [7] and affine arith-
metic [8]. The fundamental problem of these theories
is that they are too conservative; they guarantee that the
actual errors never exceed the estimated maximum, but
they say nothing about how close actual errors could be
to the maximum error in realistic cases.

3) Brute-force: This method feeds all available input data
(we refer to it as the dataset) to the target program
and actually calculates incurred errors to determine
precision. The problem of this method is twofold. First,
executing the target program for many precision options
for every data in the dataset is time-consuming. For
example, Minerva [9] repeatedly trains a DNN with
various precision to determine the best one, which
multiplies the amount of training time by the number
of possible precision options. Second, it can only es-
timate errors for input data that is available. It means
that considering extreme-case scenarios for determining
precision requires preparing (generating) such data so
that they can be fed into the target program.

C. Precision of Fractional Part

This paper particularly focuses on determining the precision
of the fractional parts of fixed-point numbers. In this context,
we merely say the precision of a fixed-point number to refer to
the number of bits assigned to its fractional part hereafter. In
addition, we assume that the most significant bit of an integer
part represents the sign, and a real number r is rounded into
the largest fixed-point number rf such that r ≥ rf .

The fractional parts are the main concern in fixed-point
arithmetic. Suppose we assign A and B bits to the integer
and fractional parts of a fixed-point number X , respectively.
A decides the maximum and minimum values that X can
represent, i.e., X satisfies −2A−1 − α ≤ X ≤ 2A−1 − 1 + α
(lemma A). Here, α is the value of the fractional part that
is less than 1. B decides how much X can be drifted from
its real value X∗, i.e., |X∗ − X| ≤ 2−B (lemma B). The
difficulties of determining A and B are quite different because
lemma A holds for any variable in a fixed-point program
while lemma B holds only for the input variables due to error
propagation. An example of lemma B not always holding is
given in Section III-B.

III. ERROR DISTRIBUTION ESTIMATION

We propose a method that estimates the distribution of
errors to mitigate the drawbacks of the above-mentioned meth-
ods. First, we deal with values that the program manipulates
with their distributions. This enables capturing the statistical
aspects of them without considering all the actual values.
Second, we model the error propagation through the code in
a form that can be applied to distributions of values.

I
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Fig. 2. Visual illustration of a distribution.

A. Distribution of Values

A distribution is a step-wise probability density function
(PDF) of a random variable r. It is defined by N tuples
{t0, ..., tN−1} where ti = {ri, pi} and the length of the steps
l (i.e., l = r1 − r0 = r2 − r1 = ...). We define r0 = rm and
l = (rM − rm)/N , where rm and rM are the minimum and
maximum possible values of r, respectively. This results in
rN−1 = r0 + (N − 1)× l = rM − l. pi is defined so that the
probability that r falls into [ri, ri + l) is pi × l. This makes
the integration of the distribution within [r0, rN−1 + l) be 1.
Figure 2 illustrates a distribution and its parameters.

A distribution of a random variable can be built by cre-
ating and normalizing its histogram. To illustrate this, let us
suppose all the possible values of a random variable r are
0.01, 0.02, 0.03, 0.06 and we build a distribution with N = 2,
which means that l = 0.025. Because there are three possible
values of r in [0.01, 0.035) and one value in [0.035, 0.06), the
distribution of x can be built as {{0.01, 30}, {0.035, 10}}.

An advantage of dealing with values by their distributions
is that operations among them can be executed by constant
time with regard to the number of actual possible values in
the distributions. Suppose that x and y are independent real-
valued random variables and let z = x + y. X , Y , and Z
denote the PDFs of x, y, and z, respectively. We will write
Z = X ⊕ Y in association with z = x + y. It is well-known
that Z(z) is given by

Z(z) =

∫
X(z − y)Y (y)dy. (1)

Because a distribution in our definition is a step-wise PDF,
the same applies to the distributions of values in a program
and the integration can be calculated with O(min(NX , NY ))
time where NX and NY are the numbers of tuples of X and
Y , respectively. We introduce the ⊗ operator in the same way,
and Z = X ⊗ Y can be calculated by

Z(z) =

∫
1

|y|
X(

z

y
)Y (y)dy, (2)

which again takes constant time with regard to the number of
actual possible values.

B. Error Propagation Modeling

Error propagation is modeled in two components: error
amplification and error injection. The former models how the
error of a variable affects the error of its successor variable
through an operator (e.g., +, sin), and the latter models how
new error is introduced by assignments. In this section, we first
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0.0001
0.0000
0.0001
0.0000
…

Distribution of 
injected error

Fig. 3. Modeling injection error when N = 4, M = 3.

look at an example that explains the two error components,
and then show the details of the modeling.

Example: Let us consider variables x and y whose preci-
sion is 1 and a simple program y = 1.1b * x. Under the
rounding method we assume (rounding to the smaller side), the
error of an input variable is always smaller than 2−N where N
is the precision. For example, if the real value of x is 0.111b,
the error of x itself is 0.011b which is smaller than 2−1.
However, the result of 1.1b * x is 0.11b and the error
against the ideal value (1.1b * 0.111b = 1.0101b) is
0.1001b that exceeds 2−1, i.e., the error is amplified by the
* operator. Even worse, the result 0.11b is rounded to 0.1b
due to the assignment to y, i.e., more error is injected by an
assignment. This yields the final error of 0.1101b which is
way beyond the error of x.

Error Amplification is modeled by derivatives of expres-
sions. Let xi (i = 0, ..., n) be the input variables and y be the
output variable of an operator: y = op(x0, ..., xn). Then, the
error of y, denoted as e(y), is approximated as

e(y) ≈
∑
i

(
e(xi)×

∂y

∂xi

)
(3)

where e(xi) is the error of xi. This equation is based on the
concept of total derivative; If xi changes slightly by e(xi),
then y changes by e(xi)× ∂y

∂xi
, as long as e(xi) is small.

Based on equation (3), we show how error amplification by
operators + and × are calculated. For y0 = x0+x1, the error
of y0 (denoted as e(y0)) is:

∂y0
∂x0

= 1,
∂y0
∂x1

= 1 (4)

∴ e(y0) = e(x0) + e(x1) (5)

For y1 = x0 × x1, the error of y1 (denoted as e(y1)) is:

∂y1
∂x0

= x1,
∂y1
∂x1

= x0 (6)

∴ e(y1) = x1 × e(x0) + x0 × e(x1) (7)

The intuition behind equation (7) is that e(x0) is amplified by
the value of x1 and the same applies to e(x1) and x0.

Equation (3) applies to other differentiable operators as well.
For example when y = sin(x), e(y) can be calculated in the
same way as for + and * as follows.

∂y

∂x
= cos(x) (8)

∴ e(y) = e(x)× cos(x) (9)

Error Injection is modeled with the number of bits dropped
by an assignment. We denote the precision of variable x as
pr(x). When assigning a value that has N bits of precision
to x and pr(x) = M satisfies N > M , the number of bits
dropped is N − M for the rounding method assumed. We
statistically model the injected error by approximating that the
lower N−M bits of an assigned value are uniformly random.
For the easiest case, if N−M is 1, the injected error is 0 in half
of the cases and 2−N in the other half. These error values with
their possibilities are used to build the distribution of injected
errors. Figure 3 illustrates this with N = 4 and M = 3.

The precision N of an assigned value depends on how
the value is calculated: N = max(pr(a),pr(b)) for a + b
and N = pr(a) + pr(b) for a * b. For example, the
value of a * b can have 1s down to the second bit from
the decimal point when pr(a) = pr(b) = 1 (e.g., if
a = b = 0.1b, then a * b = 0.01b). The precision of
a result of an irrational operator (e.g., sin) is assumed to be
a large value such as 64.

Error propagation of a whole program is calculated
by applying the aforementioned two models recursively from
output variables until we reach input variables. The errors of
input variables are calculated by quantizing input data with
the specified precision. The use of real input data enables
considering the data-dependency and the long-tail of the errors.
It is also possible to intentionally increase the errors of input
variables (for example, by multiplying the quantization errors
by a small constant) to emulate extreme-case scenarios.

C. Estimating Error Distribution

To estimate the error distribution of a target application, we
recursively apply the error propagation model to distributions
of values that the application manipulates. Because we apply
the model to distributions of values, the output of the model
(i.e., e) is also the distribution of errors.

This application of the model requires (1) replacing the +
and × operators in the model with the ⊕ and ⊗ operators, (2)
calculating the distribution of cos(x) given the distribution of
x, and (3) calculating the distributions of the input variables
of the application and their errors. Requirement (1) is done by
following the equation for Z(z) in Section III-A. Requirement
(2) is equivalent to a well-known variable conversion of
random variables. Requirement (3) can be done from the actual
values in the dataset and their errors for specific precision.

Estimating the error distribution for given precision can
be done with constant time w.r.t the dataset size once the
distributions of the input data and their errors are built. This
is because each of the ⊕ and ⊗ operators in the model takes
constant time as shown in Section III-A. The effect of the
non-constant part, i.e., building the distributions of the input
data and their quantization errors, is evaluated in Section V.

IV. ESTIMATION SYSTEM IMPLEMENTATION FOR HLS

As a concrete example of applying our method, we im-
plement an error estimation system for programs written in
C++ language, which is the de-facto standard for High-Level



Dataset for x

Precision of x and y

Original program

double x, y;
cin >> x;
y = x * x;

Modified program

FPE x, y; 
x = FPE({0.123, 0.259, …});
y = x * x;
x.set_precision(8)
y.set_precision(7)

Input

Link with estimation library, then Execute

Error distribution of y
for the specified precision

Output

e(y) = 

Fig. 4. System overview.

Synthesis (HLS). Note that this example does not narrow the
applicability of our method down to C++ only. For example,
creating an error propagation graph (Section IV-C) can also
be done for Register-Transfer Level languages (e.g., Verilog)
by tracking information flow using existing work [10].

Fig. 4 illustrates the overview of the estimation system
based on our method. In this system, a user provides:

1 A modified user program for which the error distribution
is estimated. We explain how it is modified later.

2 The dataset to feed into the input variable(s).
3 The precision of variable(s) for which fixed-point num-

bers are used.
The dataset contains input data for which the error distri-

bution is estimated. The modified program is linked with our
estimation library and executed as a normal executable. This
program then outputs the error distribution of the specified
output variable(s) for the given dataset and precision.

A. The FPE class

The FPE class abstracts all the required information to
estimate errors so that the modification to the user program
can be as small as possible. The user replaces the type of
a variable to FPE when that variable is to be mapped to a
fixed-point number. An FPE class instance contains:

1) the operator that is used to calculate it,
2) the operands that it depends on through the operator,
3) the distribution of the values (not the errors) of the

variable that it corresponds to, and
4) the pointer to a memory space to store its precision.

Suppose the user decides to use fixed-point numbers for
variables x, y, and z in a program z = x + y. In this
case, the FPE instance for z records (1) that the operator
is +, (2) that the operands are x and y, (3) the distribution
of the values of z, and (4) a pointer to a single int to
store the precision. The distribution of the values is calculated
from the distributions of the values of x and y by the ⊕
operator. We use a pointer for the precision store so that the
pointed memory space can be shared by multiple instances.

void application() {
double x[10] = {/* input data */}, y = 0.0;

for(int i = 0; i<10; i++)
y += x[i];

}

Fig. 5. Usage of our estimation system: user program before modification

void application() {
FPE x[10], y(0.0); // double => FPE

// Dataset: retrieved by any legal code
std::vector<double> x_data[10];

// Initialize input variables by dataset
for(int i = 0; i<10; i++)

x[i] = FPE(x_data[i]);

// The main part is unmodified
for(int i = 0; i<10; i++)

y += x[i];

y.set_precision_all(8); // Set precision
y.set_precision(7); // Set precision
estimate(y); // Estimate error distribution

}

Fig. 6. Usage of our estimation system: user program after modification

For example, an expression y = y + x has two ‘y’s that
have different values but the same precision unless the circuit
is specially crafted to use different precision for them.

B. Modification of User Program

The user program is modified in three ways. Fig. 5 shows
a simple program that we use to explain how it is modified,
and Fig. 6 is the modified version of it.

First, the types of variables for which the user decides to use
fixed-point numbers are replaced with FPE. For example, the
user can decide to replace the types of x[0], ..., x[9], and y
because they are the input and output variables. In addition to
variables that the user directly decides to replace, any variable
that depends on a replaced variable must also be replaced.

Second, the dataset for each input variable must be provided.
The program must pass a std::vector that contains the
dataset for an input variable to its constructor provided by the
FPE class. The dataset can be retrieved by any legal C++ code
(e.g., reading from a file or reading from the standard input).

Third, the precision of variables replaced with FPE must be
defined. This can be done either in two methods: (a) by setting
the precision of one variable to a specific value, and (b) by
setting the precision of one variable and all variables that it
depends on to a specific value. Method (b) is supported so that
the user does not need to specify every single variable one by
one. For example in Fig. 6, y.set_precision_all(8)
sets the precision of y and all variables that it depends on (e.g.,
x[0]) to be 8. The precision of y (but not other variables) is
then overwritten to 7 by y.set_precision(7).
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y9 x[9]

y0 x[0]

y10 = y9 + x[9]
E(y10) = E(y9) + E(x[9]) + I(y10)

x[9] = [v0, v1, …, vn-1]

e(x[9]) = [e0, e1, …, en-1]

E(x[9]) = {t0, t1, …, tn-1 }

y0 = [0]
E(y0) = {{0, 1}}

Quantization errors

Build distribution of e(x[9])

Fig. 7. Error propagation graph for the sample application and how error
distribution is estimated using the graph.

C. Error Propagation Graph

To recursively apply the error propagation model through
variables, our estimation system generates an error propa-
gation graph of the modified user program. It represents
how errors propagate from input to output. The nodes of a
graph consist of all variables whose types are class FPE, and
edges connect the output variable of each expression and its
operands. For example, Fig. 7 shows the error propagation
graph for the program in Fig. 6. Note that the variable y has
multiple nodes corresponding to it (e.g., y10, y9, ...) because
it is reused in the main computation loop.

Our system dynamically creates an error propagation graph
when a modified user program is executed. To do this, the
modified program #includes the C++ header file that imple-
ments the FPE class and is compiled as a normal C++ program.
The operators on FPE instances (e.g., +) are overloaded
so that they investigate the error propagation graphs of the
operands and set a new error propagation graph to the return
value (which is another FPE instance). The complete error
propagation graph is acquired from an output variable at the
end of a run of the modified program. Abstraction by the class
FPE and operator overloading make it easy for users to modify
their programs because the main computation part does not
need to be modified as shown in Fig. 6.

We explain how the error distribution of an output variable
is estimated using Fig. 7. Here, E(v) denotes the distribution
of errors of a variable v. The error distribution of the output
variable y10 is estimated as follows.

1) The amplification part and the injection part of E(y10)
are estimated separately and then combined. The ampli-
fication part is calculated based on equation (5) because
y10 is the sum of y9 and x[9]. Thus, the amplification
part is E(y9) ⊕ E(x[9]). In addition, the injection
part is further calculated using the precision of y10, y9,
and x[9] and we denote it as I(y10). Given the two
parts, we get E(y10) = E(y9) ⊕ E(x[9]) ⊕ I(y10).

2) The same procedure is recursively applied until every
term can be calculated from the input variables. For
example, E(x[9]) is calculated from the actual values
of x[9] that are given to our system as the dataset.

Fig. 8. Estimated/actual error dists. for best/worst cases in z = x + y.

Fig. 9. Estimated/actual error dists. for best/worst cases in y = sin(x).

V. EXPERIMENTAL RESULTS

A. Estimation Accuracy for Micro Benches

In this section, we evaluate how well our method can
estimate the error distribution for single operators using three
programs z = x + y, z = x * y, and y = sin(x).
The programs are implemented in C++. The input variables
obey normal distributions whose mean is 0 and the standard
deviation is 1, and we swipe the precision between 8 and 11.

The actual error distributions (baselines) are acquired by
comparing the results of programs written with floating-point
and fixed-point variables. For + and *, we change the variable
types from double to ap_fixed [11] to make a fixed-point
version of each program. For sin, an ap_fixed is up-casted
to a double to be fed to a standard sin function, and the
return the value is re-casted to ap_fixed.

Hellinger Distance (we refer to it as the distance) is used to
quantitatively compare the estimated and actual distributions.
It is a well-known metric (e.g., Section 3.2 in [12]) to measure



the similarity of probability density functions (PDFs). The
distance H between two PDFs f and g is given by

H(f, g) =
1√
2

√∫ (√
f(x)−

√
g(x)

)2

dx (10)

which has three characteristics: (1) 0 ≤ H ≤ 1 for any PDFs,
(2) H = 0 when f and g are identical, and (3) H increases
as f and g become further apart.

Fig. 8 and Fig. 9 show a comparison of best- and worst-case
estimations for x + y and sin(x), respectively. The best
case means that the distance between the actual and estimated
error distributions is the smallest among all swiped precision,
and the worst case means that it is the largest. We omit this
visual representation for x * y due to the space limit. In the
best cases, the estimated error distributions are almost identical
to the actual ones except for some small dithering. In the worst
case for x + y, the two distributions do not match as closely.

Fig. 10 shows the distance for all tested precision in each
program. The horizontal axes are the output precision and each
line corresponds to the input precision. For + and *, the label
i j means that the precision of x (denoted as pr(x)) is i and
the precision of y (denoted as pr(y)) is j.

B. Statistical Aspects of Errors

In this section, we show the importance of considering
statistical aspects of errors using our method. To this end, we
calculate the average (denoted as µ), the standard deviation
(denoted as σ), and the probability P that the error falls into
a certain range [µ − σ, µ + σ]. These values can be easily
calculated from a distribution because a distribution in this
paper is a probabilistic density function (PDF).

TABLE I
STATISTICAL ANALYSIS FOR ERROR DIST. OF Y = SIN(X)

µ σ P
pr(x) = 11, pr(y) = 9, estimated 0.00112 0.000585 0.600
pr(x) = 11, pr(y) = 9, actual 0.00112 0.000589 0.602
pr(x) = 8, pr(y) = 8, estimated 0.00303 0.00163 0.667
pr(x) = 8, pr(y) = 8, actual 0.00311 0.00173 0.680
normal distribution - - 0.683

Table I shows µ, σ, and P calculated for the estimated and
actual error distributions for variable y in y = sin(x). The
table also shows P for a normal distribution. The precision of
x and y are the same as in Fig. 9. We draw two takeaways from
the table. First, µ, σ, and P calculated from the estimated error
distribution are close to the ones calculated from the actual
error distribution even in the worst case (pr(x) = pr(y) =
8). Second, P is largely different from a normal distribution
when pr(x) = 11 and pr(y) = 9 (0.600 vs. 0.683). This
result demonstrates the importance of considering statistical
aspects of errors when determining precision.

C. Estimation Accuracy and Speed for Application Bench

In this section, we evaluate our method with a more realistic
application in two aspects: (a) the execution time and (b) the
distance between the estimated and actual error distributions.

The baseline is to repeatedly execute the application using
fixed-point arithmetic for all data in the dataset. The execution
time is measured on an Intel Xeon Platinum 8276 with 192
GB of DD4-3200 memory running Debian GNU/Linux 11.
We fix the number of tuples N of a distribution to 256.

We use Gaussian Filter with a 3x3 filter implemented in
C++ for this purpose. For the dataset, we collect 3K images
in the order of their filenames from each of the 10 categories
of CIFAR-10 dataset [13] (30K images in total). The images
are converted to gray-scale and each pixel value is normalized
to [0, 1]. We estimate the error distribution of the value of the
center pixel of the output images.

Fig. 11 shows the comparison of the execution times of our
method and the brute-force method. We omit the time it takes
to load images from the storage to memory. The horizontal
axis shows the number of images, and the vertical axis shows
the average execution time across all the tested precision. We
swipe the precision of the pixels of the input images, the pixels
of the output image, and the intermediate variables between 8
bits to 11 bits. The execution time of the brute-force method
is proportional to the number of images because the method
iterates over all the images. In contrast, the execution time of
our method increases less rapidly, giving a more significant
speedup when the size of the dataset is larger. Our method
does not run in exactly constant executing time because it
still iterates over all images to build distributions of the input
variables. However, this effect becomes negligible when the
main computation of the target application takes more time.

The max, min, average, and standard deviation of the
distance between the actual and estimated error distributions
were 0.362, 0.096, 0.128, and 0.046, respectively. The fact that
the average is only 0.128 suggests that our method works well
even when the target program consists of many operators.

D. Robustness Analysis

An advantage of our method compared to the brute-force
method besides speed is the ability to conduct robustness
analyses. A robustness analysis consists of three steps:

1) The user chooses specific precision by our method based
on their error requirements.

2) The user tweaks input distributions of our method with
extreme-case scenarios in mind.

3) The user confirms that their error requirements are still
met even in these extreme-case scenarios.

Tweaking a distribution can be done either for the distri-
butions of input variables, the distributions of their errors,
or both. For example, the user can double the quantization
errors of input variables to tweak the distributions of them.
This reflects an extreme-case scenario where the errors of
the input data are much higher than expected. Conducting the
same analysis by the brute-force method is quite troublesome
because the user must generate such input data. On the other
hand, our method enables tweaking at the distribution level.

As an example of robustness analysis, we apply it to the
gaussian filter application. We assume that the user has chosen
8 bits, 10 bits, and 11 bits for the precision of the input pixels,



Fig. 10. Distance of actual and estimated error distributions for z = x + y, z = x * y, and y = sin(x). The input variables obey Normal(0, 1).

Fig. 11. Execution time of our method and the brute-force method.

intermediate variables, and output pixels, respectively, and has
decided to tweak the error distribution of the input pixels by
multiplying the quantization errors by 1.1. Figure 12 shows
the estimated error distribution without tweaking (top) and
with tweaking (bottom). The vertical lines indicate the tops
of the distribution shapes. The figure shows that the peak of
the distribution is shifted to the right because of the increased
quantization errors, while the overall shapes (e.g., maximum
error) of the distributions remain the same. The user can then
compare their error requirements to these results to see if the
precision chosen is robust to this extreme-case scenario.

VI. RELATED WORK

Earlier studies on errors incurred by fixed-point arithmetic
only reveal the largest possible error, but not the statistical
aspects of errors. Simić et al. [8] apply model checking to
validate that the largest error incurred to a variable does not
exceed a threshold by rewriting an input program to a form
that model checking is applicable to errors. Fang et al. [14]
use affine arithmetic, an improved methodology of interval
arithmetic, to compute the range of errors that a variable can
contain from the range of the input and the precision.

PreAxC [15] is the only work we know that predicts the
error distribution of approximated programs. They take a
program as a DFG (Data Flow Graph) and feed it to graph
neural networks. The major difference from our work is that
they focus on circuit-level programs (i.e., a DFG node is a
functional unit in their method), while we handle more generic
programs such as those written in C++. This restricts their
DFG nodes to be additions or multiplications only.

Little is studied on how to efficiently determine the precision
of fixed-point numbers. As a result, applications that lever-

Fig. 12. Error distributions of Gaussian Filter estimated for a particular
precision. Top: input error distributions are not tweaked. Bottom: same
precision, but the input error distributions are tweaked.

age fixed-point numbers merely use precision that satisfies
their error requirements [1], [16] but may overlook further
optimization opportunities. A few exceptions we are aware of
include Minerva [9], which optimizes the precision of fixed-
point numbers for DNNs beyond convenient options (e.g., 8
bits). However, they do it by repeatedly training a DNN for
each precision configuration, which takes a long time.

Error analysis using derivatives has been done since the old
days in the context of rounding a real number to a floating-
point number for scientific computing [17], [18]. As far as we
know, we are the first to combine it with distribution of values
to determine precision of fixed-point arithmetic.

VII. CONCLUSION

To ease the burden of determining precision of fixed-point
arithmetic, we proposed a new technique that estimates the
error distributions of the application output when fixed-point
arithmetic is used. Our method allows not only determining
precision based on real data, but also analyzing the robustness
of chosen precision by considering extreme-case scenarios.
By implementing an example estimation system based on our
method, we showed that the error distributions can be properly



estimated for some primitive operators (+, *, and sin) as well
as for a real application.
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