
The Granularity Gap Problem: A Hurdle for Applying
Approximate Memory to Complex Data Layout

Soramichi Akiyama
The University of Tokyo

Tokyo, Japan
akiyama@ci.i.u-tokyo.ac.jp

Ryota Shioya
The University of Tokyo

Tokyo, Japan
shioya@ci.i.u-tokyo.ac.jp

ABSTRACT
The main memory access latency has not much improved for more
than two decades. Approximate memory is a technique to reduce
the DRAM access latency in return of losing data integrity, and it
is beneficial for applications that are robust to noisy data. To ob-
tain reasonable outputs from applications on approximate memory,
it is crucial to protect critical data while accelerating accesses to
non-critical data. A fundamental limitation of approximate mem-
ory is that the approximation granularity, the minimum size of a
continuous memory region that the same error rate is applied, is as
large as a few kilo bytes. However, applications may have critical
and non-critical data interleaved with smaller granularity (e.g., a
pointer and a number in the same C struct). We refer to this as the
granularity gap problem. We first show that many applications po-
tentially suffer from this problem, and thenwe propose a framework
to quantitatively evaluate the performance overhead of a possible
method to avoid it using known techniques. The evaluation results
show that the performance overhead is non-negligible compared
to expected benefit from approximate memory, suggesting that the
granularity gap problem is a significant concern.

CCS CONCEPTS
• Hardware→Memory and dense storage; Analysis and de-
sign of emerging devices and systems.

KEYWORDS
approximate memory; memory systems; performance analysis

ACM Reference Format:
Soramichi Akiyama and Ryota Shioya. 2021. The Granularity Gap Problem:
A Hurdle for Applying Approximate Memory to Complex Data Layout. In
Proceedings of the 2021 ACM/SPEC InternationalConference on Performance
Engineering (ICPE ’21), April 19–23, 2021, Virtual Event, France. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3427921.3450259

1 INTRODUCTION
The impact of main memory access latency to the overall perfor-
mance is much larger on a computer today than in the past. This
is because the performance gap between the main memory and
the CPU has ever been enlarging. Figure 1 shows the single thread

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8194-9/21/04.
https://doi.org/10.1145/3427921.3450259

Figure 1: Exponential growth of single thread performance
over time (normalized to SPEC CPU 2006 score × 1000).

performance of server-class CPUs plotted over time1. The figure
shows an exponential growth of the single thread performance until
recent years. In contrast, the access latency of DRAM that the main
memory consists of has been almost the same for more than two
decades. As shown in [5], the speedup of the major latency sources
of DRAM over time is very marginal, especially when compared to
the exponential growth of the CPU performance. Because DRAM
access latency occupies substantial amount in a random memory
access latency, there is a strong need to reduce the DRAM access
latency to catch up with the CPU performance.

Approximate memory is a technique to reduce the main memory
latency by sacrificing its data integrity [14, 22, 25, 30]. Prior works
have proven that the DRAM access latency can be reduced by violat-
ing the timing constraints of DRAM internal operations at the cost
of increased bit-error rate [5, 7, 10, 17, 31, 34]. Approximate mem-
ory exploits this characteristic to reduce the memory access latency
by leveraging the error robustness of applications themselves. To
obtain reasonable outputs from applications on approximate mem-
ory, it is crucial to protect critical data while accelerating accesses
to non-critical data. For example, suppose we want to accelerate a
deep learning application using approximate memory. The matrices
that express the weights of each layer are non-critical data because
it is known that the accuracy of the trained model does not degrade
much even when some bit-flips are injected into them [4, 14]. On
the other hand, pointers from one layer of a network to another or
the counter of the number of epochs are critical data. We must con-
trol the error rate of memory regions depending on the criticality
of the data stored in them.

A limitation of approximate memory is that the error rate can
be controlled only with the granularity of a few kilo bytes due
to the internal structure of DRAM. We refer the minimum size of
continuous data to which the same error rate must be applied to
1Data provided in [26] under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1145/3427921.3450259
https://doi.org/10.1145/3427921.3450259
https://creativecommons.org/licenses/by/4.0/


ICPE ’21, April 19–23, 2021, Virtual Event, France Soramichi Akiyama and Ryota Shioya

as approximation granularity. The approximation granularity for a
given DRAM module is decided by the row size of the module. A
row is a sequence of data bits inside a DRAMmodule that are driven
simultaneously to catch up with requests coming from a fast CPU.
Because approximate memory we focus on is based on tweaking the
timing of DRAM internal operations, the approximation granularity
is equal to the row size. The row size of a DRAM module is in the
range of 512 bytes to a few kilo bytes. For example, the row size of a
module from Micron [20] is 2 KB, meaning that the approximation
granularity of this module is also 2 KB.

The large approximation granularity makes it difficult to gain
benefit from approximate memory for applications that have critical
and non-critical data interleaved with a smaller granularity (e.g.,
8 bytes). We refer to this problem as the granularity gap problem.
This can happen when an application manages its data as an array
of data structure that has critical members (e.g., pointers) and non-
critical members (e.g., numbers whose small divergence do not
affect the application’s result). For a concrete example, suppose an
application that traverses an array of graph nodes, and each graph
node has pointers to its neighboring nodes and a score of it that is
robust to bit-flips. The non-critical data of this application cannot
be stored in approximate memory due to the difference between
the approximation granularity and the granularity of interleaving
of critical and non-critical data.

In this paper, we show the granularity gap problem is a sig-
nificant concern in using approximate memory. In concrete, the
contributions of this paper are summarized as follows:

(1) A source code analysis of widely used benchmarks to prove
that many applications potentially suffer from the granular-
ity gap problem, extended from our previous work [2].

(2) A discussion on pros and cons of a memory layout conver-
sion technique in the context of the granularity gap problem.

(3) A framework to quantitatively evaluate the negative perfor-
mance impact of the memory layout conversion technique.

(4) Evaluation results of the negative performance impact on
widely used benchmarks, which proves the significance of
the granularity gap problem in using approximate memory.

2 APPROXIMATE MEMORY ARCHITECTURE
AND ITS LIMITATION

This section describes the background and the goal of this work.
Our technical report [3] provides a more detailed explanation in its
Section 2 and 3.

2.1 Overview of Approximate Memory
Approximate memory is a new technology to mitigate the perfor-
mance gap between main memory and CPUs. The main idea is to
reduce the latency of main memory accesses at a cost of the data
integrity by exploiting design margins that exist in many DRAM
chips today. The CPU may read a slightly different data from what
has been written before to the main memory. A design margin
refers to the difference between a design parameter defined in the
specification of a device and the actual value which the device can
be operated with. In particular, we focus on the design margin in
the timing of internal (electrical) operations of DRAM. Even when
wait-time parameters associated with some internal operations are

shortened than the specification, many DRAM chips can read stored
data “almost” correctly with a few bit-flips (errors) injected to the
data [5, 13]. By controlling the timing of internal operations of
DRAM, we can trade reduced main memory access latency with
increased bit-error rate.

Approximate memory is especially beneficial for machine learn-
ing, multimedia, and graph processing applications, all of which
incur many memory accesses and are tolerant to noisy data. For
example, Stazi et al. [28] show that allocating data in approximate
memory for the x264 video encoder can yield acceptable results,
and our previous work [1] show that a graph-based search algo-
rithm (mcf in SPEC 2006) can yield the same result as error-free
execution even when some bit-flips are injected. Regarding the
performance improvement, Koppula et al. [14] show 8% speedup in
average for training various DNN models on approximate memory,
and Lee et al. [15] show that using Adaptive-Latency DRAM [16]
for approximate memory gives 7% to 12% speedup in average for “32
benchmarks from Stream, SPEC CPU 2006, TPC and GUPS” (they do
not show numbers for each benchmark though). The performance
improvement of a few to 10+ percent is important to these applica-
tions because they are typically executed in large scale data centers,
where only a few % of relative efficiency improvement results in a
huge reduction of energy and/or runtime in total.

Even for applications that can tolerate noisy input and inter-
mediate data, they have critical data that must be protected from
bit-flips. For example, deep learning is known to be robust to bit-
flips [4, 9, 14] but not all parts of the data are robust to them.
Pointers from one layer of a network to another or the loop counter
that counts the number of epochs must be protected from bit-flips.
Protecting critical data requires two steps:

(1) Detecting which parts of data are critical and which parts
are non-critical

(2) Storing non-critical parts of data into approximate memory
while storing the critical parts to normal memory

For step (1), there have been much effort [1, 19, 23] and it is out of
the scope of this work, so we assume that discrimination of critical
and non-critical data is given. For step (2), we must map the critical
and non-critical data into different memory regions operated with
different timing parameters. We show in the next section that this
is challenging due to how DRAM is implemented.

2.2 The Granularity Gap Problem
A limitation of approximate memory exploiting design margins in
timing parameters is that the approximation granularity cannot be
smaller than a few kilo bytes. The approximation granularity refers
the minimum size of a continuous memory region to which the
same error rate must be applied. This is because the same timing
parameter is applied to an entire “row” of data bits [12] and the
size of a row is as large as a few kilo bytes (e.g., 2 KB in a 16Gb
SAMSUNG chip [27]). This stems from a fundamental constraint
that many bits must be driven in parallel so that slow DRAM can
catch up with the high rate of requests coming from the CPU.

A challenge in using approximate memory is the gap between
the approximation granularity and the granularity at which criti-
cal and non-critical data are interleaved. We call this problem the



The Granularity Gap Problem: A Hurdle for Applying Approximate Memory to Complex Data Layout ICPE ’21, April 19–23, 2021, Virtual Event, France

struct node_t {
int id; // id of the node, critical
struct node_t ∗r; // pointer to the right child, critical
struct node_t ∗l; // pointer to the left child, critical
double score; // score of this node, non−critical

};

int size = 1000 ∗ sizeof(struct node_t);
struct node_t ∗nodes = malloc(size);

Figure 2: Critical and non-critical data interleaved in a single
C struct: it is not possible to protect the critical data while
storing the non-critical data on approximate memory due to
a large approximation granularity (e.g., 2 KB).

granularity gap problem. We say critical and non-critical data are in-
terleaved when they co-locate inside one instance of a C struct or
a C++ class. Figure 2 shows an example of interleaved critical and
non-critical data. The data structure struct node_t contains both
critical and non-critical data, and a pointer named nodes points
to an array of struct node_t. To gain benefit from approximate
memory for this code, we must protect the critical data (id, r, and l)
while storing the non-critical data (score) into approximate mem-
ory. This is not possible because the approximation granularity is
as larger as a few kilo bytes (say 2 KB), while we need to enable or
disable approximation with a granularity of 4 bytes to achieve it.

The granularity gap problem has been overlooked by the research
community because it is not relevant to applications that have large
chunks of non-critical data. For example for deep learning appli-
cations, the non-critical data are matrices storing the weights of a
network whose sizes range from a few kilo bytes to hundreds of
mega bytes. In this case, we can store entire matrices into approxi-
mate memory and the approximate granularity is not an issue.

The goal of this paper is to prove the significance of the gran-
ularity gap problem with quantitative evidence. First, we show that
there are many applications that potentially suffer from this prob-
lem. Second, more importantly, we show that avoiding this problem
with a known technique has negative performance impact that is
as large as almost canceling the benefit of approximate memory.

3 SOURCE CODE ANALYSIS
To show that many real applications can potentially suffer from the
granularity gap problem, we analyze source code of widely used
benchmarks in this section.

3.1 Analysis Methodology
For a given application, we find if the data structure that can obtain
benefit from approximate memory has critical and non-critical data
interleaved. Because approximate memory is the most effective
when an application’s data that incur many cache misses are stored
on it, we focus our analysis on a data structure that incurs the
largest number of cache misses within an application. We refer to
such a data structure as the most cache-unfriendly data structure.
After finding such a data structure, we analyze it to estimate if the
application potentially suffers from the granularity gap problem.

To find the most cache-unfriendly data structure of an applica-
tion, we first measure the number of cache misses per instruction

using Precise Event Based Sampling (PEBS) on Intel CPUs. PEBS is
an enhancement of normal performance counters that uses desig-
nated hardware for sampling to reduce the skid between the time an
event (e.g., a cache miss) occurs and the time it is recorded [32]. The
small skid enables pinpointing which instruction in an application
binary causes many hardware events.We execute a benchmarkwith
its sample dataset using linux perf, and the actual command line is
‘perf record -e r20D1:pp -- b’. The parameter r20D1:pp spec-
ifies a performance event that counts the number of L3 misses [11].
The parameter b is replaced by an actual command line to execute
each benchmark.

After measuring the number of per-instruction cache misses, we
find the data structure accessed by this instruction, which is the
most cache-unfriendly data structure of this application. Due to the
lack of off-the-shelf tools to disassemble an arbitrary binary into
C/C++ source code, we rely on human knowledge and labor to do
this. One can refer to our previous work [2] for detailed examples
of the manual analysis.

3.2 Experimental Setup

Table 1: Analyzed Benchmarks (SPEC CPU 2017)

Name Domain Cache Miss Rate
deepsjeng_r game AI (chess) 77.5 %

nab_r molecular modeling 64.9 %
omnetpp_r discrete event simulation 56.1 %
namd_r molecular dynamics 50.4 %
lbm_r fluid dynamic 48.8 %
x264_r video encoding 47.3 %
mcf_r optimization 43.5 %
gcc_r c compiler 36.6 %

blender_r image processing 35.0 %
xz_r data compression 31.6 %

perlbench_r perl interpreter 21.4 %

Table 2: Experiment Environment

CPU Intel Xeon Silver 4108 (Skylake, 8 cores)
Memory DDR4-2666, 96 GB (8GB × 12)
LLC 11 MB (shared across all the cores)
OS Debian GNU/Linux 10 (kernel: 4.19.0-6-amd64)

gcc/g++ 8.3.0 (Debian 8.3.0-6)

Table 1 describes the benchmarks we analyze. Each line shows a
benchmark’s name, its domain, and the cache miss rate measured by
the linux perf tool. From SPEC CPU 2017, we analyze benchmarks
whose cache miss rates are more than 20 %. We exclude others
because approximate memory is not beneficial for CPU intensive
benchmarkswith low cachemiss rates.We also exclude oneswritten
in Fortran because the memory layout conversion technique we
discuss in Section 4 is mainly researched for programs written in
C. We include ones written in C++ because the difference between
C++ and C (classes, templates, and some new syntax) do not affect
the applicability of the memory layout conversion technique.



ICPE ’21, April 19–23, 2021, Virtual Event, France Soramichi Akiyama and Ryota Shioya

Table 3: Results of Source Code Analysis (S: is a C struct or a
C++ class, P: has a pointer, F: has a fp, I: has an integer)

Benchmark Data Type S P F I
deepsjeng_r ttentrty_t[] ! !

nab_r INT_T[]
omnetpp_r sVector ! ! ! !

namd_r CompAtom[] ! ! !
lbm_r double[]
x264_r uint8_t[]
mcf_r arc[] ! ! !
gcc_r -

blender_r VlakRen[] ! ! ! !
xz_r uint8_t[], uint32_t[]

perlbench_r char[]

Table 2 shows the machine we use to execute the benchmarks.
We use the largest data set provided by the benchmarks (refrate).
The LLC miss rate is measured using the linux perf tool.

3.3 Results
Table 3 shows the analysis results. Each row shows a benchmark,
the most cache-unfriendly data structure, flags that represent the
kinds of members that the data structure contains:

• S: the data is either a C struct or a C++ class.
• P: the data structure contains a pointer.
• F: the data structure contains a floating pointer number.
• I: the data structure contains an integer.

The data type column is denoted by [] if the data is managed as an
array of that data type. We regard any type compatible with an in-
teger (e.g., char, long) as an integer. If a class inherits other classes,
we include the members of the parent classes as well because an
instance of a child class in the memory contains all members of the
parent classes. We exclude static members and member functions
because they are not stored in the memory region allocated for
each instance. We do not show the result for gcc_r because cache
misses are scattered across many instructions. Two data types are
shown for xz_r because two instructions incur almost the same
number of cache misses. For all the benchmarks, the instruction
that incurs the largest number of cache misses existed in their own
code and not in any standard C/C++ libraries.

The results show that many applications potentially suffer from
the granularity gap problem. The most cache-unfriendly data struc-
ture is either a C struct or a C++ class in 5 out of 11 benchmarks
in SPEC CPU 2017. Combined with the same analysis applied to
SPEC CPU 2006 in our technical report [3], we conclude that many
applications “potentially” suffer from the granularity gap problem.

3.4 Drawbacks of the Methodology
Manual effort to find the data type accessed by a given instruction
incurs a scalability issue and increases the chances of analysis errors.
There are two error patterns stemming from the manual effort:

(1) Mis-identifying the variable in the source code that corre-
sponds to a given memory access instruction

struct {
double x;
double y;

} points[N];

// calculate the center
double center_x = 0, center_y = 0;
for(i = 0; i<N; i++) {
center_x += points[i].x / N;
center_y += points[i].y / N;

}

Figure 3: Example of an array of structures.

struct {
double x[N];
double y[N];

} points;

// calculate the center
double center_x = 0, center_y = 0;
for(i = 0; i<N; i++) {
center_x += points.x[i] / N;
center_y += points.y[i] / N;

}

Figure 4: Example of a structure of arrays.

(2) Mis-identifying the type of data that is stored in the identified
variable in source code

Pattern (1) can happen when the application binary has complex
data/control flows for example with multiple levels of indirection
(e.g., a->b->c) or when the binary does not look similar to the source
code due to compiler optimizations. Pattern (2) can happen when
the declared type of a source variable and the type of actual data
stored in it are different (i.e., polymorphism). Developing compiler
support to reduce the possibilities of these errors is future work.

Another concern for our analysis arises when a member variable
of a C struct or a C++ class is passed to a function by reference.
For example, when the same function is called in two contexts
by passing the pointer to a member of different C struct (e.g.,
&s1.v and &s2.v where s1 and s2 are of different types), the same
instruction can access memory regions inside different data types.
In this case, our analysis may additionally require an investigation
of stack traces and points-to analysis [29]. However, we did not hit
this case in any of the benchmarks in our experiments.

4 MEMORY LAYOUT CONVERSION
This section discusses an applicability of a memory layout conver-
sion technique to avoid the granularity gap problem, and points
out that it can degrade the performance for some applications. We
show in Section 5 that this performance overhead is as large as
almost canceling the benefit of approximate memory in some cases.

4.1 AoS to SoA Conversion
An array of structures (AoS) can be converted into a structure

of arrays (SoA) without changing the results of an application.
Given an array of C struct instances, this technique converts the
memory layout of an application so that each member of the C
struct is stored as a distinct array. Figure 3 and Figure 4 show



The Granularity Gap Problem: A Hurdle for Applying Approximate Memory to Complex Data Layout ICPE ’21, April 19–23, 2021, Virtual Event, France

Figure 5: The change of memory layout when the AoS to SoA
conversion is applied to the code in Figure 2.

an example of this conversion done explicitly by hand. The code
in Figure 3 manages data as an AoS, while Figure 4 shows the
converted version that manages each member of the data structure,
x and y, as a distinct array. Code to access the data are converted
for example from points[i].x to points.x[i].

Besides the technical difficulties that have been tackled by many
researchers (e.g., how to find pointer aliases, how to apply it dynam-
ically to programs without the source code, how to ensure safety
in weakly typed languages), a fundamental limitation of the AoS
to SoA conversion is that there is no method to mathematically
calculate its effect on performance. Petrank et al. [24] show that
predicting the number of cache misses that a given data layout
generates for an arbitrary memory access pattern is NP regarding
the number of data objects. This means that one must either do ex-
haustive experiments for memory access patterns under interest or
use heuristics to informally estimate the performance implication.
This limitation leads us to do the former to evaluate its performance
overhead in a later section.

4.2 Pros: Mitigate the Granularity Gap Problem
The AoS to SoA conversion enables using approximate memory
even when critical and non-critical data are interleaved by avoiding
the granularity gap problem. Because eachmember of the converted
data structure is stored in a distinct array, it can be mapped to a
designated DRAM row that has the appropriate timing parameter
for the criticality of that member.

Figure 5 depicts how we can selectively store non-critical data
of the code in Figure 2 to approximate memory. Gray boxes in the
figure show critical data and white boxes show non-critical data. In
the original code that manages the data as an AoS, it is not possible
to selectively protect the critical data while accelerating accesses
to the non-critical data because of the granularity gap problem
(Figure 5 (a)). In the converted code that manages the data as a SoA,
the non-critical data (score) consists a distinct array and it can be
mapped directly to approximate memory, while the critical data
(id, r, l) can be mapped to normal memory (Figure 5 (b)).

4.3 Cons: Negative Impact on Performance
The disadvantage of the AoS to SoA conversion is that it can de-
grade the performance due to increased number of cache misses. In
Figure 2, it is highly possible that all the members of the same
struct instance (that is, for any i, nodes[i].id, nodes[i].r,
nodes[i].l, and nodes[i].score) share the same cache line. Thus,
accessing more than two members of the same struct instance

closely in time incurs at most 1 cache miss. However, if we apply
the AoS to SoA conversion to the same code, members that are
in the same struct instance in the original code do not share the
same cache line. This might increase the number of cache misses
and degrade the performance depending on the memory access
pattern to the data to be converted.

For example, imagine a program that traverses a graph managed
by the data structure in Figure 2 and it decides which child of the
current node (either l or r) to visit depending on the score of the
current node. Applying the AoS to SoA conversion to this program
increases the number of cache misses because members of one
graph node are stored in different cache lines in the AoS version,
while they share the same cache line in the SoA version.

5 EVALUATION OF PERFORMANCE IMPACT
The negative performance impact of the AoS to SoA conversion
explained in Section 4.3 is a serious concern if it cancels or outper-
forms the benefit of approximate memory. This section introduces a
new methodology to quantitatively analyze the slowdown given by
the AoS to SoA conversion, and shows that it is as large as almost
canceling the benefit of approximate memory in the worst case.

5.1 Pseudo Conversion by CPU Simulator
To quantitatively analyze the slowdown and show its significance,
we estimate the effect of memory layout changes incurred by the
AoS to SoA conversion by reproducing the memory layout that it
would generate from applications’ viewpoints using a cycle accurate
simulator. Figure 6 shows how our framework works:

(1) The source code of the target application is annotated to
print the starting addresses and the sizes of memory regions
that contain the most cache-unfriendly data structure.

(2) The target application is executed on a vanilla simulator
to gain the starting addresses and the sizes printed by the
annotations added in step (1).

(3) The remap info that decides which members of the struct
are stored in distinct arrays is defined. The remap info con-
tains the size of each struct member and a boolean value
that represents if it is stored into a distinct array (we say
that a member is remapped if this value is true).

(4) A simulation is started on our modified simulator with in-
formation obtained in step (2) and step (3).

(5) While in a simulation, the target addresses of memory access
instructions are investigated. If the target address points to a
remapped member, it is converted to reproduce the memory
layout that the AoS to SoA conversion would generate.

The address conversion is done in the address remapper in Fig-
ure 6 when the front-end of the CPU inserts requests into the load
store queue. This is because the border between the front-end and
the load store queue is a place right after an accessed address is de-
termined and right before it is used. Therefore, converting addresses
at this point prevents cache consistency problems.

Three requests are passed from the front-end to the address
remapper in Figure 6: (1) an 8-byte read request to 0x40000, (2)
an 8-byte write request to 0x40008, and (3) a 4-byte read request
to 0x40010. From the starting address of the memory region that
contains the most cache-unfriendly data structure and the remap



ICPE ’21, April 19–23, 2021, Virtual Event, France Soramichi Akiyama and Ryota Shioya

Figure 6: Simulation framework to estimate the negative performance impact of the AoS to SoA conversion.

info, the address remapper can find that the first request reads the
member p. Because the remap info specifies that p is not remapped,
the request is passed as-is to the load store queue. The second
request accesses the member v that is remapped. Its target address
is converted into an unused address (0xffff0000 in the figure). The
third request accesses the member id. Although it is not remapped,
its address is shifted by 8 bytes to 0x40008 because the previous
member v is remapped “away”. As a result, the memory layout from
the application’s point of view is converted as shown in the figure.
The member v consists a distinct array and the other members are
packed as if there is no v in-between.

5.2 Discussion: Use of Simulator
There are efforts to estimate howmemory layout conversion speeds
up applications [21, 33] by investigating their memory access traces
without applying the memory layout changes themselves (unlike
our method). They measure the access frequencies to struct mem-
bers and the access affinities between them from a memory trace
of unmodified source code, and suggest which members should be
placed closer in memory or separated to different memory regions.
However, we cannot directly leverage this method for our purpose
because they do not quantitatively estimate the performance impact
of the suggested layouts. A difficulty is that memory layout conver-
sion has two effects of opposite directions: (1) slowdown caused
by increased number of cache misses due to separation of members
with strong affinities, and (2) speedup caused by decreased size of
members that are not separated as distinct arrays.

A challenge of actually applying the SoA to AoS conversion in
the compiler-level stems from the fact that pointers can contain
any addresses in C/C++ and the values held by pointers cannot
be decided by a static analysis. This makes it difficult to robustly
implement the conversion in the compiler level although theoreti-
cally possible by points-to analysis [29]. In contrast, because our
method converts memory addresses inside a simulator at runtime,
it is straight-forward to find the address that a pointer contains.

A disadvantage of our method is that a cycle accurate simulation
is needed for every single conversion pattern. This is not always
possible because the number of memory layout conversion pat-
terns increases exponentially to the number of members in the
most cache-unfriendly data structure. On the other hand, if can we
somehow estimate the slowdown only from access frequencies and

Table 4: Simulated Environment

ISA x86_64
Frequency 3 GHz
Issue Width 8

Reorder Buffer 192 entries
L1 cache 32 KB, 2 way, 32 MSHRs, 2 cycles/miss
L2 cache 2 MB, 8 way, 32 MSHRs 20 cycles/miss

Mem Ctrl Latency 75 ns

affinities, we can estimate the slowdown of all conversion patterns
at once because the access frequencies and affinities can be obtained
by one execution of a non-modified application.

5.3 Experimental Setup
Table 4 shows the simulated environment. The “Mem Ctrl Latency”
shows the length of time between a point when the CPU sends a
request to the memory controller and a point when it receives the
response. The memory access latency from software point of view
additionally contains the time it takes to miss the caches, which is
7.3 ns (= (2 + 20) cycles × 1

3 ns per cycle) and makes up a total of
82.3 ns. We use version 20.0.0.0 of gem5 and its SE mode, which em-
ulates syscalls and requires no OS simulation. The benchmarks are
compiled by gcc 8.3.0 (Debian 8.3.0-6). We fast-forward the initial-
ization phase of each benchmark with the AtomicSimpleCPUmodel
to only emulates the ISA. After that, we simulate a fixed length of
time (0.2 seconds in the simulated world) using the DerivO3CPU
model to faithfully simulates an OoO CPU.

We evaluate three benchmarks from SPEC CPU 2017, namely
mcf_r, deepsjeng_r, and namd_r. For each benchmark, we test
every possible memory layout conversion pattern and compare
the performance. Let 𝑁 be the number of members in the most
cache-unfriendly data structure in each benchmark, we test all
2𝑁−1 cases of remapping. We exclude blender_r and omnetpp_r
although theirmost cache-unfriendly data structures are C++ class.
The source code of blender_r does not have clear separation
between the initialization phase and the main computation, and
omnetpp_r has 21 members in its most cache-unfriendly data struc-
ture (sVector) and it is not possible to test 220 possibilities.



The Granularity Gap Problem: A Hurdle for Applying Approximate Memory to Complex Data Layout ICPE ’21, April 19–23, 2021, Virtual Event, France

Figure 7: Evaluation result for mcf_r

Figure 8: Evaluation result for deepsjeng_r

5.4 Results
Figure 7 and Figure 8 show the evaluation results. Each bar cor-
responds to a memory layout conversion pattern and each graph
has 2𝑁−1 + 1 bars, where 𝑁 is the number of members of the most
cache-unfriendly data structure. The right-most bar shows the av-
erage of all patterns. The 𝑦 values show the number of executed
micro operations during simulation normalized to the value when
memory layout conversion is not applied. The bars are ordered
by their 𝑦 values. Lower bars show larger negative performance
impact (we simulate a fixed length of time in the simulated world).

mcf_r: Among the 256 memory layout conversion patterns,
229 patterns yield worse performance than the no conversion
case. The lowest performance is observed when the first
three members are remapped to consist distinct arrays, and
its performance is 8.13 % slower than the no conversion case.
The average negative performance impact is 3.81 %.

deepsjeng_r Themost cache-unfriendly data structure “wraps”
an array of length 4 and each member of the array is another
struct (e.g., struct outer { struct inner array[4]; }).
The inner data structure (struct inner) has 5 members and
we apply the same remapping policy to all 4 instances of the
inner data structure (if array[0].d1 is remapped, array[i].d1
are remapped for any i ∈ {1, 2, 3}). The lowest performance
is observed when the first and the fourth member of the
inner data structure are remapped, with 2.90 % slowdown.

namd_r Among the 64 memory layout conversion patterns,
the largest negative performance impact was 0.1 % in the
worst case and the average performance impact was an im-
provement of 0.4 %. We provide a detailed graph in our tech-
nical report [3] in its Section 6.

The negative performance impact of the memory layout con-
version to avoid the granularity gap problem is sometimes not
negligible compared to the benefit of approximate memory. For

example, Kim et al. [13] report that the average speedup of SPEC
CPU 2006 benchmarks when the timing parameters are violated
is around 4 - 5 % (Figure 8 of [13]). Note that their system does
not reduce the latency to the extent that bit-flips are visible to the
applications. Even if we assume that the performance gain by al-
lowing bit-flips to be visible to the application is twice as large, it is
almost canceled in the worst case by the performance overhead due
to the granularity gap problem (8 - 10 % speedup vs. 8.13 % slow-
down). Another research [30] report that their system can save up
to around 12.5 % of overall (CPU + memory) energy consumption
for mcf in SPEC CPU 2006 (Figure 7 (c) of [30]) by approximate
memory. Saving energy is another benefit of approximate memory
besides performance. If we assume that the negative performance
of memory layout conversion to mcf is similar to the one to mcf_r2,
the 12.5 % gain is deducted by a non-negligible amount.

6 RELATEDWORK
To the best of our knowledge, we are the first to study the granular-
ity gap problem. One of the reasons is that it is not relevant when
we consider storing only large arrays of numbers such as weight
matrices of a neural network to approximate memory. However,
as we point out in this paper, it is a significant problem for many
realistic applications. Esmaeilzadeh et al. mention [8] about this
problem a bit, but they provide no further investigation.

Nguyen et al. [22] propose a method that partially mitigates
the granularity gap problem. It transposes rows and columns of
data layout inside DRAM so that a chunk of data is stored across
many rows that have different error rates. This enables protection
of important bits (e.g., the sign bit of a floating point number) while
aggressively approximating less important bits. This mechanism is
effective for DNNs because they require the whole part of a large
weight matrix at once and the number of memory accesses do not
increase regardless of the data layout. However, it is not effective in
general cases where memory is accessed with smaller granularity.

Mapping data into memory regions with different error rates
depending on its criticality is commonly proposed. Liu et al. [18]
partition a DRAM bank into bins with proper refresh interval and
ones with prolonged refresh interval. Each data is store into either
type of bins depending on the criticality specified by the program-
mer. Although they do not discuss the minimum bin size, it cannot
be smaller than a DRAM row as we discuss in this paper. Chen et
al. [6] propose a memory controller that maps data into different

2The code are similar and the most cache-unfriendly data structures are the same.



ICPE ’21, April 19–23, 2021, Virtual Event, France Soramichi Akiyama and Ryota Shioya

DRAM banks with different error rates depending on the criticality
of the data. Because this method is bank-based, the approximation
granularity is limited to the bank size. A typical DDR3/DDR4 DIMM
module has 2 GB to 16 GB with either 8 or 16 banks, resulting in
a typical bank size of 256 MB to 2 GB. Raha et al. [25] advance a
previous work [18] by measuring each bin’s error rate at a given
prolonged refresh interval and assigning them to approximate data
in the ascending order of the error rate. They realize the bin size
(or “page size” in their terminology) of 1 KB by measuring the aver-
age error rate per 1 KB. Although this approach could be further
pursued to realize smaller page sizes, it still cannot control error
rates per byte as it just measures them and use appropriate pages.

7 CONCLUSION
We investigated the granularity gap problem of approximate mem-
ory, which arises due to the difference between approximation
granularity and the granularity of actual data criticality. Because
the former is as large as a few kilo bytes in today’s DRAM and the
latter is often a few bytes, we cannot apply different protection
levels to critical and non-critical data. We analyzed source code of
SPEC CPU 2017 benchmarks and found that 5 out of 11 benchmarks
potentially suffer from this problem. We also proposed a simulation
framework to quantitatively analyze the negative performance im-
pact to avoid this issue with a known technique, and conclude that
the granularity gap problem is a significant concern and it requires
more attention from the research community.

ACKNOWLEDGMENTS
This work was supported by JST, ACT-I Grant Number JPMJPR18U1,
Japan.

REFERENCES
[1] Soramichi Akiyama. 2019. A Lightweight Method to Evaluate Effect of Approx-

imate Memory with Hardware Performance Monitors. IEICE Transactions on
Information and Systems E102-D, 12 (Dec. 2019), 2354–2365.

[2] Soramichi Akiyama. 2020. Assessing Impact of Data Partitioning for Approxi-
mate Memory in C/C++ Code. In The 10th Workshop on Systems for Post-Moore
Architectures (SPMA). 1 – 7.

[3] Soramichi Akiyama and Ryota Shioya. 2021. The Granularity Gap Problem: A
Hurdle for Applying Approximate Memory to Complex Data Layout. Technical
Report. 13 pages. arXiv:2101.10605.

[4] N. Chandramoorthy, K. Swaminathan, M. Cochet, A. Paidimarri, S. Eldridge, R. V.
Joshi, M. M Ziegler, A. Buyuktosunoglu, and P. Bose. 2019. Resilient Low Voltage
Accelerators for High Energy Efficiency. In International Symposium on High
Performance Computer Architecture (HPCA). 147–158.

[5] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,
Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.
2016. Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization. In International Conference on
Measurement and Modeling of Computer Science (SIGMETRICS). 323–336.

[6] Yuanchang Chen, Xinghua Yang, Fei Qiao, Jie Han, Qi Wei, and Huazhong Yang.
2016. A Multi-accuracy Level Approximate Memory Architecture Based on
Data Significance Analysis. In IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). 385–390.

[7] J. Choi, W. Shin, J. Jang, J. Suh, Y. Kwon, Y. Moon, and L. Kim. 2015. Multiple
Clone Row DRAM: A low latency and area optimized DRAM. In International
Symposium on Computer Architecture (ISCA). 223–234.

[8] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Ar-
chitecture Support for Disciplined Approximate Programming. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 301–312.

[9] Kamyar Givaki, Behzad Salami, Reza Hojabr, S. M. Reza Tayaranian, Ahmad
Khonsari, Dara Rahmati, Saeid Gorgin, Adrian Cristal, and Osman S. Unsal. 2020.
On the Resilience of Deep Learning for Reduced-voltage FPGAs. In International
Conference on Parallel, Distributed and Network-Based Processing (PDP). 110–117.

[10] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and O.
Mutlu. 2016. ChargeCache: Reducing DRAM latency by exploiting row access
locality. In International Symposium on High Performance Computer Architecture
(HPCA). 581–593.

[11] Intel. 2018. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3 (3A, 3B, 3C & 3D): System Programming Guide.

[12] Bruce Jacob, Spencer Ng, and David Wang. 2007. Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[13] Jeremire Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. 2018. Solar-DRAM:
Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines. In
IEEE International Conference on Computer Design (ICCD). 282–291.

[14] Skanda Koppula, Lois Orosa, A. Giray Yağlıkçı, Roknoddin Azizi, Taha Shahroodi,
Konstantinos Kanellopoulos, and Onur Mutlu. 2019. EDEN: Enabling Energy-
Efficient, High-Performance Deep Neural Network Inference Using Approximate
DRAM. In International Symposium on Microarchitecture (Micro). 166–181.

[15] Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, Rachata
Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and Onur Mutlu. 2017.
Design-Induced Latency Variation in Modern DRAM Chips: Characterization,
Analysis, and Latency Reduction Mechanisms. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, Article 26 (June 2017), 36 pages.

[16] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu.
2015. Adaptive-latency DRAM: Optimizing DRAM timing for the common-case.
In Int’l Symposium on High Performance Computer Architecture (HPCA). 489–501.

[17] Y. Lee, H. Kim, S. Hong, and S. Kim. 2017. Partial Row Activation for Low-
Power DRAM System. In International Symposium on High Performance Computer
Architecture (HPCA). 217–228.

[18] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn.
2011. Flikker: Saving DRAM Refresh-power Through Critical Data Partitioning.
In International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 213–224.

[19] Abdulrahman Mahmoud, Radha Venkatagiri, Khalique Ahmed, Sasa Misailovic,
Darko Marinov, Christopher W. Fletcher, and Sarita V. Adve. 2019. Minotaur:
Adapting Software Testing Techniques for Hardware Errors. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 1087–1103.

[20] Micron. 2018. 16Gb, 32Gb: x4, x8 3DS DDR4 SDRAM Description. https:
//media-www.micron.com/-/media/client/global/documents/products/data-
sheet/dram/ddr4/16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf?rev=77c8db7a371.

[21] Svetozar Miucin and Alexandra Fedorova. 2018. Data-Driven Spatial Locality. In
International Symposium on Memory Systems (MEMSYS). 243–253.

[22] Duy Thanh Nguyen, Nguyen Huy Hung, Hyun Kim, and Hyuk-Jae Lee. 2020.
An Approximate Memory Architecture for Energy Saving in Deep Learning
Applications. IEEE Trans. on Circuits and Systems I: Regular Papers (2020), 1–14.

[23] Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. 2018. Fault Site Pruning for
Practical Reliability Analysis of GPGPU Applications. In International Symposium
on Microarchitecture (Micro). 750 – 762.

[24] Erez Petrank andDror Rawitz. 2002. TheHardness of Cache Conscious Data Place-
ment. In Symposium on Principles of Programming Languages (POPL). 101–112.

[25] Arnab Raha, Soubhagya Sutar, Hrishikesh Jayakumar, and Vijay Raghunathan.
2017. Quality Configurable Approximate DRAM. IEEE Trans. Comput. 66, 7 (July
2017), 1172–1187.

[26] Karl Rupp. 2020. Microprocessor Trend Data. https://github.com/karlrupp/
microprocessor-trend-data/.

[27] Samsung Electronics Co., Ltd. 2017. 8Gb C-die DDR4 SDRAM x16.
https://www.samsung.com/semiconductor/global.semi/file/resource/2017/
12/x16%20only_8G_C_DDR4_Samsung_Spec_Rev1.5_Apr.17.pdf.

[28] Giulia Stazi, Lorenzo Adani, Antonio Mastrandrea, Mauro Olivieri, and Francesco
Menichelli. 2018. Impact of Approximate Memory Data Allocation on a H.264
Software Video Encoder. In High Performance Computing. ISC High Performance
2018. Lecture Notes in Computer Science. 545–553.

[29] Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In Sympo-
sium on Principles of Programming Languages (POPL). 32–41.

[30] K. Tovletoglou, L. Mukhanov, D. S. Nikolopoulos, and G. Karakonstantis. 2020.
HaRMony: Heterogeneous-Reliability Memory and QoS-Aware Energy Manage-
ment on Virtualized Servers. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 575–590.

[31] YaohuaWang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri Ghiasi,
Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad Sadrosadati, and Onur
Mutlu. 2018. Reducing DRAM Latency via Charge-Level-Aware Look-Ahead
Partial Restoration. In Int’ml Symposium on Microarchitecture (Micro). 298 – 311.

[32] Vincent M. Weaver. 2016. Advanced Hardware Profiling and Sampling(PEBS, IBS,
etc.): Creating a New PAPI Sampling Interface. Technical Report. Univ. of Maine.

[33] Louis Ye, Mieszko Lis, and Alexandra Fedorova. 2019. A Unifying Abstraction
for Data Structure Splicing. In International Symposium on Memory Systems
(MEMSYS). 173–183.

[34] X. Zhang, Y. Zhang, B. R. Childers, and J. Yang. 2016. Restore truncation for
performance improvement in future DRAM systems. In International Symposium
on High Performance Computer Architecture (HPCA). 543–554.

https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf?rev=77c8db7a371
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf?rev=77c8db7a371
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf?rev=77c8db7a371
https://github.com/karlrupp/microprocessor-trend-data/
https://github.com/karlrupp/microprocessor-trend-data/
https://www.samsung.com/semiconductor/global.semi/file/resource/2017/12/x16%20only_8G_C_DDR4_Samsung_Spec_Rev1.5_Apr.17.pdf
https://www.samsung.com/semiconductor/global.semi/file/resource/2017/12/x16%20only_8G_C_DDR4_Samsung_Spec_Rev1.5_Apr.17.pdf

	Abstract
	1 Introduction
	2 Approximate Memory Architecture and Its Limitation
	2.1 Overview of Approximate Memory
	2.2 The Granularity Gap Problem

	3 Source Code Analysis
	3.1 Analysis Methodology
	3.2 Experimental Setup
	3.3 Results
	3.4 Drawbacks of the Methodology

	4 Memory Layout Conversion
	4.1 AoS to SoA Conversion
	4.2 Pros: Mitigate the Granularity Gap Problem
	4.3 Cons: Negative Impact on Performance

	5 Evaluation of Performance Impact
	5.1 Pseudo Conversion by CPU Simulator
	5.2 Discussion: Use of Simulator
	5.3 Experimental Setup
	5.4 Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

