
Performance Prediction of Memory Access
Intensive Apps with Delay Insertion: A Vision

Soramichi Akiyama, Takahiro Hirofuchi, Hirotaka Ogawa
Artificial Intelligence Research Center,

National Institute of Advanced Industrial Science and Technology (AIST), Japan
Email: {s.akiyama, t.hirofuchi, h-ogawa}@aist.go.jp

Abstract—Predicting performance of a given program on a
given machine is highly important because the environment
where the program is developed and the one where it is actually
executed are often different. However, this prediction is also
difficult because the performance of the same program on
different machines is not the same, due to the different balances
in performance of the various computer components (e.g. CPU,
memory, etc.). Although many studies tackle this problem by
modelling the target program and/or the target machine, model-
based techniques can only provide what they model and cannot
leverage existing performance analysis tools. In this paper, we
tackle this problem by actually executing the target program in
an emulated environment, where the performance balance of the
CPU and the memory subsystem is virtually tweaked using a
dynamic binary instrumentation technique. We show that this
approach can emulate the total execution time of a memory-
access-intensive application on different machines, and provide a
vision of the future, showing how our approach can outperform
existing model-based approaches.

I. INTRODUCTION

A. Performance Prediction

Predicting the performance of a given program in a target
environment is important to achieve the expected performance
of the program, because the environment where an application
is developed and the one in which it is executed are often
different. For example, Artificial Intelligence (AI) applications
are often developed on a local machine convinient for in-
teractively choosing a large number of parameters (e.g. the
number of intermediate layers and the connectivity between
them in neural networks), and then executed on a powerful
server to deal with big data, such as 1.28 million images [1]
or 252 million elements of an input matrix [2]. However,
predicting the performance is difficult at the same time because
the performance of the same program on different machines
differ greatly, because different machines can show a different
performance balance among their components. For example,
Hennessy and Patterson [3] shows in Figure 5.2 of page
289 that the performance balance of processors and memory
subsystems is not constant, because processors have been
speeding up relative to memory subsystems ever since 1980s,
due to evolutionary differences in speed.

B. An Example of Performance Difference

Differences in the performance balance between processors
and memory subsystems largely affects the performance char-

Fig. 1. Actual and Expected Execution Time of Matrix Factorization on
Different Machines (two lines are overlapped in the left-most figure)

acteristics of memory-access-intensive applications. Figure 1
shows the performance of a Matrix Factorization application
on three different machines. The program uses the alternate
least square (ALS) [4] algorithm and is written in Python.
Matrix Factorization decomposes a large sparse matrix R into
a product of two smaller dense matrices A and B (R ≈ A×B),
and the size of R used in this experiment is 8K × 8K. The x
axes show the number of processes used for calculation and the
y axes show the elapsed time required to finish one iteration of
ALS, which typically needs tens of iterations to converge. The
solid lines show the actual execution time obtained on each
machine, and the dashed lines show the expected performance
(linear speedup):

yexpected(x) =
yactual(1)

x
. (1)

The values in the three graphs are measured on machine
1 and 2 in Table I and a large shared-memory machine
with 16 Xeon E7-8867 v3 processors and 12TB of memory,
respectively from left to right. These results clearly show that
the performance characteristics of the same program differ
depending on the underlying machines. The blue lines (left)
are almost overlapped with each other, and that means the
program scales up to 8 processes completely on this machine;
while the green (middle) and red (right) lines show that the
same program does not scale well on these machines. We
confirmed similar trends with the CG and BT benchmarks
of the NAS Parallel Benchmarks [5], and a C program for
large matrix-vector multiplication (known to be memory-
access-intensive) that we use in Section III for preliminary
experiments.9781-5090-1445-3/16$31.00 c⃝ 2016 IEEE (CloudCom’16)

C. Our Goals and Contribution

Our goal is to improve performance prediction in different
environments by running the actual code of a given program
in an emulated environment, rather than using abstracted
performance models that have been widely researched already.
The aim of this approach is to draw out richer and more
integrated information for performance prediction than model-
based techniques provide.

The common underlying idea of model-based techniques
is to retrieve one or several performance metrics efficiently
by abstracting the target program and/or the target machine.
However, a model-based technique only predicts the metrics
that the model focuses on, and it is difficult to use the
predicted metrics in any way that the model does not support.
For example, DraMon [6] predicts the memory bandwidth
usage of multi-threaded programs without actually running
them by abstracting the memory access pattern from the
actual code. Although this method is efficient to know the
memory bandwidth usage, what if the user wants to know
the chronological change pattern of the memory bandwidth
usage? In this case the user has to modify DraMon to collect
the chronological pattern, because simply combining another
model that extracts the chronological change pattern of a given
program is difficult due to the difference of the abstraction
level of the two models.

To mitigate this shortcoming of model-based techniques,
our goal is to allow users to do whatever analysis they want
in an emulated environment where the performance balance
of the target machine is emulated. In the memory bandwidth
example above, the user can run a normal profiler to retrieve
the bandwidth usage and its chronological pattern at the same
time. As the first step toward this goal, the contributions of
this paper are as follows:

1) We describe our system that emulates the performance
balance of the CPU and the memory subsystem of the
target machine using the dynamic binary instrumentation
technique with QEMU and show that it can predict
the total execution time of a memory-access-intensive
program.

2) Although emulating total execution time does not out-
perform what model-based techniques provide, we dis-
cuss two concrete examples on how our approach can
be the basis of richer performance analysis in the future
than model-based techniques.

II. PROPOSED SYSTEM

A. Overview

The main idea of our work is to emulate the performance
balance of the target machine and execute the target memory-
access-intensive application in the emulated environment. We
achieve this by tweaking the performance balance of the CPU
and the memory subsystem virtually. Technically, we insert a
small amount of delay after the memory accesses of the target
program at runtime.

Fig. 2. Different Performance Balance between Machines

Fig. 3. The Main Idea: Delay Insertion

Figure 2 illustrates how the performance of a memory-
access-intensive application differs on two machines with
different performance balances. The left-hand side shows a
breakdown of the execution time into CPU-cycles, during
which the CPU is actually doing some calculation, and Mem-
cycles, during which the CPU is stalled to wait for data
accesses to be served by the memory subsystem. The right-
hand side shows the aggregated time each cycle uses, and the
ratio of time CPU- and Mem- cycles use against the total
execution time are different between machine A and machine
B, because of the difference of the performance balance of
their CPUs and memory subsystems.

Figure 3 shows how delay insertion can emulate the per-
formance of the given application for differente performance
balance of the CPU and the memory subsystem. By inserting
sufficient amounf of delay after every memory accesses, the
aggregated ratio of time that CPU- and Mem- cycles use
become the same as the ones on the target machine.

B. Proof-of-Concept Implementation

There are several possible ways to implement a delay
insertion after memory accesses:

1) Hardware-based mechanisms install a special hard-
ware module into the emulating machine. This approach
can yield the lowest performance overhead for the tar-
get program, but installing extra hardware reduces the
practicality.

2) Compiler-based mechanisms insert delays at the com-
pile time and also yield small amount of performance
overhead, but a new compiler has to be built for every
target language. Since pursuing performance is also
common for non-HPC programmers today, a uniform
mechanism for many target languages is preferable.

3) Dynamic binary instrumentation inserts delays at the
runtime by dynamically modifying the executed binary.
This method is most suitable for our purpose because

it is independent of the programming language and the
performance overhead caused by the instrumentation is
acceptable, since we focus on the performance balance,
not actual values.

We use the user-mode of the QEMU hardware emulator
as the basic dynamic binary instrumentation mechanism we
rely on. In the user-mode, QEMU can execute a binary of
any supported architecture on a machine of any supported
architecture (for example, it can run MIPS binaries on x86
CPUs). The user-mode first disassembles the binary of a
given program and translates it into QEMU-specific interme-
diate instructions. After performing some optimization on the
intermediate instructions, QEMU translates the intermediate
instructions back into the target architecture instructions. The
output code is stored in the JIT cache and reused when the
same region of the program is executed again (disassembling
and translating back and forth are avoided when the JIT cache
hits).

Our system inserts a small number of NOP instructions
after every load- and store- related instructions when QEMU
translates intermediate instructions back to target architecture
instructions. Inserting NOPs changes the size of the output
executables, but we do not need to care about the jump
addresses embedded in the binary because they are auto-
matically replaced by QEMU itself. By inserting NOPs at
this stage, we do not need to consider many kinds of CISC
instructions because they are merged into a small number of
intermediate instructions (for example, x86 has 10s of mov-
related instructions but QEMU has only four depending on
if it’s a load or a store and the target data size). This not
only allows easy implementation but also allows adapting the
system to multiple instruction set architectures, some of which
are emerging thanks to their energy-efficiency compared to
x86.

An advantage of using QEMU compared to using other
dynamic binary instrumentation tools such as Intel PIN [7]
or Valgrind [8] is that QEMU can run even a whole operating
system under dynamic binary instrumentation in its system-
mode. Although in this paper we only use the user-mode, this
gives our mechanism a chance to be applicable for predicting
the performance of a whole operating system in the future.
Note that in the current version (2.6) of QEMU it only uses
single thread of the host operating system when running a
guest operating system with dynamic binary instrumentation
mode, but there are active discussions on allowing it to use
multiple host threads (e.g. [9]).

III. PRELIMINARY EXPERIMENT

We show our system can tweak and emulate the perfor-
mance balance of underlying machines virtually. Table I shows
the hardware specification of the machines. For software,
Debian GNU/Linux 8.5 and QEMU 2.6 are used. Note that
the CPU and the DRAM are from different generations, thus
the performance balance is also different between the two
machines.

TABLE I
HARDWARE SPECIFICATIONS

Machine 1 Machine 2

CPU Model Xeon E5-2603 v0 Xeon E5-2699 v3
CPU Cores 8 (4 cores × 2 sockets) 18 (1 socket)

CPU Micro Arch. Sandy Bridge Haswell
Last Level Cache 10 MB each 45 MB
Memory Model DDR3 1600 MHz DDR4 2133 MHz

Memory Ch. 4 channels 4 channels

Fig. 4. Normalized Throughput of Matrix-Vector Multiplication on Machine
1 (Left) and Machine 2 (Right)

Fig. 5. Normalized Throughput of Matrix-Vector Multiplication in the
Emulated Environment. Left: Each line corresponds to the number of NOPs
from 0 to 24 incremented by 4. Right: Each point from x = 2 to x = 8
corresponds to the number of NOPs from 0 to 24 incremented by 4 (# NOPs
= 0 at x = 2, # NOPs = 4 at x = 3, ..., # of NOPs = 24 at x = 8).

Figure 4 shows the normalized throughput of a matrix-
vector multiplication program (well-known to be memory-
access-intensive). The size of the matrix is 8K × 8K and is
larger than the LLC of both machines. The program is written
in C and it uses multiple threads by dividing the input matrix,
and each thread calculates a part of the results. The throughput
is the number of multiplications done in each time step, thus
the expected throughput increases linearly as the number of
threads increases. Note that throughput is the inverse of total
execution time and is equivalent to it. The lines on the left
(blue) show the results on machine 1, and the ones on the
right (green) show the results on machine 2. The values are the
average of three runs. The program scales better on machine 1,
which is as expected, because machine 1 is older than machine
2 and the performance gap between the CPU and the memory
subsystem is smaller.

TABLE II
NORMALIZED PERFORMANCE ON MACHINE 2 (NATIVE) AND ON
MACHINE 1 WITH DELAY INSERTED (EMULATED ENVIRONMENT)

of Threads 1 2 3 4 5 6 7 8

Native 1 1.92 2.73 3.49 4.33 4.99 5.57 6.02

Emulated 1 1.99 2.90 3.71 4.42 4.98 5.53 6.07

of NOPs 0 0 4 8 12 16 20 24

The left-side of Figure 5 shows the normalized performance
when the same program is executed with our QEMU on
machine 1. We call the combination of machine 1 and the
delay-inserting QEMU the emulated environment. The number
of NOPs inserted is changed from 0 to 24, incremented by 4
(there are 24÷ 4+ 1 = 7 lines) and all values are normalized
by the value at x = 1 with 0 NOPs. Note that the y axis starts
from 0 (not 1) because the values at x = 1 for number of NOPs
> 0 are less than 1. A very important finding here is that, in
the emulated environment, the throughput scales linearly with
regard to the number of threads and it degrades linearly with
regard to the number of inserted NOPs. This is because the
execution with dynamic binary instrumentation is much slower
than the original program, and the performance bottleneck in
the memory subsystem is no longer relevant. However, in the
native execution, the difference of the throughput between
“actual” and “expected” grows with regard to the number
of threads, because using more threads causes more severe
resource conflict inside the memory subsystem.

Given the finding above, the number of NOPs that best
emulates the performance balance should increase with regard
to the number of threads used. The right-side of Figure 5 is
based on this idea. The graph is plotted by picking some values
from the figure on the left: the value for x = n in the right
figure is the same as the value for x = n with (n − 2) × 4
NOPs inserted in the left figure. Since n moves from 1 to 8,
(n−2) moves from -1 to 6, but we set the number of nops to
be zero when (n − 2) = −1. This is because the normalized
performance at x = 8 is best emulated when the number of
NOPs is 24.

Table II shows the actual values of the normalized through-
put on machine 2 and the emulated environment on machine
1 (in other words, actual values of the right-hand sides of
Figure 4 and Figure 5). The fact that the differences between
the “Native” and “Emulated” values are small means that our
system can emulate the performance balance of the target
machine and the performance of a memory-access-intensive
application on it. Note that deciding the number of NOPs to
insert automatically is one of tasks we set for ourselves in the
future work.

IV. DISCUSSION: WHAT OUR SYSTEM CAN BRING

We give two examples on how our system can outperform
model-based techniques in the future.

A. Fully Leverage Existing Performance Analyzers

Profilers give fine-grained performance metrics of a given
program, such as the amount of time each function uses
(either exclusively or including child functions). Compar-
ing these fine-grained metrics among machines is useful to
help in understanding why the performance of the same
program differs on different machines. For example in the
Matrix Factorization application, the perf profiler shows
that the _aligned_strided_to_contig_size8 func-
tion in the BLAS library consumes constant amount of time
(12 %) on machine 1, while on machine 2 the percentage
grows with regard to the number of processes used. This is a
strong key for the programmer to know that the different per-
formance characterstics of the Matrix Factorization application
is due to the different memory access latencies, because the
function name suggests that it does some memory alignment
and thus has a lot of small memory accesses.

Simulating a profiler with model-based techniques requires
the programmer to combine a fine-grained model of execution
time and runtime call graphs. On the other hand, we aim
to leverage existing profilers as-is, by running them within
our emulated environment and help in understanding the
performance difference of the target program without any extra
effort, such as combining multiple models and information.

B. Dealing with Multi-Threaded Applications

Modeling multi-threaded applications with locks is difficult
for model-based techniques because it requires to analyze data
dependencies and the probability of lock conflict. What is
worse, the relative execution time of critical sections (against
other parts of the program) can change when the performance
balances of the underlying machines differ, because locks are
shared resources among cores/sockets and checking the lock
condition often requires DRAM accesses. Dealing with this
issue requires queueing-theory-based analysis, whose parame-
ters are hard to decide systematically for each target program.
On the other hand, our system automatically propagates the
effect of prolonged/shortened critical sections to the other parts
by design because the whole of the code is actually executed.

V. RELATED WORK

Many studies tackle the performance prediction problem
using performance models of the target program. Zhai et
al. [10] predicts the total execution time of a target parallel
program by combining a model of the communication pattern
and the serial version of the program. Sengupta et al. [11]
predicts the total execution time when the target program is
executed with non-volatile memory, which is more energy
efficient but has longer latency than DRAM. They retrieve
memory traces of the target program and calculate how long
these memory traces are delayed by the longer latency of
Non-volatile memory by considering the number of memory
accesses in each interval of the traces. Wang et al. [6] improves
the prediction of memory IO throughput of multi-threaded
programs by considering the hit-ratio of the cache inside the
DRAM modules. As explained in Section I-C, the fundamental

shortcoming of model-based techniques is that they can only
predict what they model. For example, to know how the
difference of memory IO throughput between two machines
impacts the total execution time of the target program requires
the combination two models shown above, which is very costly
and not straight-forward.

Quartz [12] predicts the performance of a given application
when it is run on a machine equipped with non-volatile
memory modules, by emulating larger read/write latencies of
non-volatile memory modules compared to normal DRAMs.
Although our idea is similar to Quartz, the largest difference is
that we insert delay at the instruction level while they do at the
epoch (time-interval) level. Inserting delay at the instruction
level allows finer-grained performance analysis in the emulated
environment. For example, the execution time of a function is
prolonged with regard to the number of memory accesses in
the fuction with our method, while in Quartz it is not the case
because an epoch can include multiple function calls.

VI. FUTURE WORK

Future work includes two directions:
1) Deciding the number of NOPs to insert systematically

is required to complete the system. It requires not only
the specifications of the target machines (e.g. the number
of cycles for a DRAM access, the size of the last
level cache, etc.), but also some cutting-edge challenges
such as estimating the resource conflict level inside the
DRAM module (e.g. bus, row-buffer, etc.).

2) New virtualization techniques are needed to achieve
the two examples in Section IV. For one thing, the over-
head of system calls should be hidden because they are
largely delayed in dynamic binary instrumentation and
thus invalidate the profiling results of the whole program
execution. Fortunately, actually decreasing the overhead
of system calls in dynamic binary instrumentation is
not necessary. A possible solution can be to run the
program natively first, cache the results and the number
of memory accesses in system calls, and then use that
information for emulation.

VII. CONCLUSION

In this paper, we tackle performance prediction of a given
program on different machines by virtually tweaking the
performance balance of the underlying machine. Our system

is based on the idea that inserting a small amount of NOP
instructions after memory-access-related instructions can em-
ulate the performance balance of the CPU and the memory
subsystem of the target machine. We showed that our approach
can emulate the normalized throughputs that an large matrix-
vector multiplication workload shows in different machines,
and gave examples on how our system can outperform existing
model-based mechanisms in the future.

ACKNOWLEDGMENTS

This paper is based on results obtained from a project
commissioned by the New Energy and Industrial Technology
Development Organization (NEDO).

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 770 – 778.

[2] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin, “A fast parallel sgd for
matrix factorization in shared memory systems,” in 7th ACM Conference
on Recommender Systems (RecSys), 2013, pp. 249–256.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth
Edition: A Quantitative Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2006.

[4] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in 4th International Confer-
ence on Algorithmic Aspects in Information and Management (AAIM),
2008, pp. 337–348.

[5] “Nas parallel benchmarks,” http://www.nas.nasa.gov/publications/npb.
html.

[6] W. Wang, T. Dey, J. W. Davidson, and M. L. Soffa, “Dramon:
Predicting memory bandwidth usage of multi-threaded programs with
high accuracy and low overhead,” in International Symposium on High
Performance Computer Architecture (HPCA), 2014, pp. 380–391.

[7] “Pin - a dynamic binary instrumentation tool,” https://software.intel.com/
en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

[8] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” ACM SIGPLAN Notice, vol. 42, no. 6,
pp. 89–100, Jun. 2007.

[9] S. Hajnoczi, “Towards multi-threaded device emulation in qemu,” KVM-
Forum 2014.

[10] J. Zhai, W. Chen, and W. Zheng, “Phantom: Predicting performance
of parallel applications on large-scale parallel machines using a single
node,” in ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2010, pp. 305–314.

[11] D. Sengupta, Q. Wang, H. Volos, L. Cherkasova, J. Li, G. Magalhaes,
and K. Schwan, “A framework for emulating non-volatile memory
systems with different performance characteristics,” in ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE), 2015, pp.
317–320.

[12] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A
lightweight performance emulator for persistent memory software,” in
16th Annual Middleware Conference (Middleware), 2015, pp. 37–49.

