

Approach

Integrated Simulation of Energy Saving and Overhead

Performance Model of Live Migration

- Migration Mechanisms used for Simulation
- 1. Normal pre-copy
- MiyakoDori S. Akiyama *et al.*, in *IEEE CLOUD'12* Memory images are kept in PMs on a migration to future reuse of the images when VMs migrate "back"

When a VM migrates back, only the updated region (red part) is transferred Workload (memory size/updates) + NW bandwidth

→ Total migration time, Amount of transferred memory
[Normal pre-copy]

Implemented in recent versions of **SIMGRD** [MiyakoDori]

Migration history to simulate it (refer the paper)

Energy Model of Live Migration

Amount of transferred memory → Energy overhead [Normal pre-copy]

Energy overhead (E_{mig}) depends only on the amount of transferred memory (V_{mig}) - H. Liu *et al.*, in *HPDC'11*

$$E_{mig} = \alpha V_{mig} + \beta$$

[MiyakoDori]

Extra resource usage is negligible in terms of energy consumption \rightarrow Use the model above as-is

Experimental Results

Metrics

[Saved Energy Ratio (%)]

How much energy does consolidation actually save?

[Energy Overhead (%)]

How much portion of energy is lost for migration?

Simulation Setting

Consolidation Algorithm	1. An idle VM migrates to <u>the</u>
Most dense	 warehouse server 2. A busy VM migrates to <u>a</u> high power server (most loaded one, least loaded one, random) 3. A PM sleeps when no VM is hosted on the PM
Workload 10-20mins	4GB mem usage, 128MB hot stop (updated 2MB/s), 10-20 mins load/idle intervals for 12 hours
Number of Machines	{128 64 32} VMs on 32 PMs
Power of Active PM	$185 + (235 - 185) \times load/capacity [W]$
Power of Sleeping PM	20 [W]