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Abstract—Virtualization techniques greatly benefit cloud com-
puting. Live migration enables a datacenter to dynamically re-
place virtual machines (VMs) without disrupting services running
on them. Efficient live migration is the key to improve the
energy efficiency and resource utilization of a datacenter through
dynamic placement of VMs. Recent studies have achieved efficient
live migration by deleting the page cache of the guest OS to
shrink the memory size of it before a migration. However, these
studies do not solve the problem of IO performance penalty
after a migration due to the loss of page cache. We propose
an advanced memory transfer mechanism for live migration,
which skips transferring the page cache to shorten total migration
time while restoring it transparently from the guest OS via the
SAN to prevent IO performance penalty. To start a migration,
our mechanism collects the mapping information between page
cache and disk blocks. During a migration, the source host
skips transferring the page cache but transfers other memory
content, while the destination host transfers the same data as
the page cache from the disk blocks via the SAN. Experiments
with web server and database workloads showed that our
mechanism reduced total migration time with significantly small
IO performance penalty.
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I. INTRODUCTION

Cloud computing has become a major computing paradigm
used both for enterprise and personal purposes. Virtualization
techniques are highly important as building blocks of the
cloud computing paradigm. A cloud datacenter achieves easy
maintenance, good isolation across users, and high degree of
resource utilization thanks to the them. Live migration [1]
enables a datacenter to dynamically replace virtual machines
(VMs) without disrupting the services running on them. For
example, high memory utilization [2], load balancing [3] and
low energy consumption [4] are realized by dynamic VM
placement using live migration. Efficient live migration is the
key technique to apply these studies to real-world datacenters.

Page cache is a widely-adapted mechanism to improve
performance of disk IO operations. It is equipped in many
modern operating systems such as Linux, Windows and BSDs.
A VM running a workload that treats large data has large
amount of page cache. This prolongs total migration time of
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live migration thus it must be approached to achieve efficient
live migration. Recent studies [5], [6] shortens total migration
time by forcing the guest OS to delete the page cache before
a migration to shrink the memory size of the VM. However,
their techniques greatly reduces the IO performance of the VM
after a migration due to the loss of the page cache.

We propose an advanced memory transfer mechanism for
live migration, which skips transferring the page cache to
shorten total migration time while restoring it transparently
from the guest OS via the SAN to prevent IO performance
penalty. To start a migration, our mechanism collects the
mapping information between page cache and disk blocks.
During a migration, the source host skips transferring the
page cache but transfers other memory content, while the
destination host transfers the same data as the page cache
from the disk blocks via the SAN. Our technique shortens
total migration time by simultaneously utilizing the SAN along
with the general purpose network and achieves smaller IO
performance penalty by transparently transferring the page
cache rather than deleting it.

Our experiments using with web server and database work-
loads showed that our method reduced total migration time
with significantly smaller IO performance penalty because the
page cache is kept alive during a migration. We also give
mathematical analysis of the method and validate the analysis
using the experimental results.

This paper is structured as follows. Section II explains
background. Section III refers related work. Section IV shows
the overview of our method and how it reduces total migration
time. Section V gives the details of our technical contributions.
Section VI explains the implementation details. Section VII
shows the evaluation results. Section VIII gives discussions
and Section IX concludes the paper.

II. BACKGROUND

A. Dynamic VM Placement

Dynamic optimization of VM placement, or simply dynamic
VM placement, plays an important roles in the overall perfor-
mance of a cloud datacenter, such as energy consumption, re-
source utilization, and load balancing. Usage pattern and load
of the VMs on a cloud are highly dynamic and unpredictable,
thus dynamic VM placement is mandatory.



.

Fig. 1. Network Architecture of Cloud Datacenter: Storage nodes are
connected with a designated storage area network (SAN).

Examples of dynamic VM placement are as follows: VMs
that have similar memory content are dynamically consoli-
dated to share the identical memory pages and reduce the
overall memory usage of the datacenter [2]; overloaded VMs
are packed into under-utilized hosts while taking the network
topology into account [3]; VMs under low load are live
migrated into small number of physical hosts to turn off spare
hosts and reduce the energy consumption [4].

Efficient live migration is a mandatory technique to real-
ize dynamic VM placement, because it must have as little
interference as possible to the services running on the VMs.
We achieve efficient live migration when the target VM is
running a workload with large data and has large amount of
page cache. Our mechanism utilizes the storage area network
(SAN) equipped in a datacenter to simultaneously transfer
restorable page cache and other data inside the VM memory.
The descriptions on the network links and restorable page
cache are given in the following subsections.

B. Network Architecture of Cloud Datacenter

Figure 1 illustrates a simplified view of the network archi-
tecture of a typical cloud datacenter. The main point is that
storage nodes are connected with a designated SAN along
with a general purpose network. CISCO suggests a datacenter
networking architecture that includes Storage Networking and
Business Continuance Networking [7]. Nodes might have
another link for management purposes. Descriptions of each
node are as follows:

Storage Area Network (SAN): It is used to communicate
with the storage nodes in the datacenter. A shared filesystem
is built on top of this link and IO requests and data from/to
the storage nodes go through this link. An important notice is
that we do not assume IP-capability of this link. The shared
filesystem can be built with any networking such as Infiniband
or Ethernet without IP.

General Purpose Network: It is used to deal with any
network packets other than storage-related ones. For example,
HTTP requests sent from the Internet or sent between services
running in the datacenter go through this link.

C. Memory Redundancy Between Disk

A VM running a workload with large data can have many
memory pages identical to disk blocks due to restorable page
cache. An operating system uses as many free memory pages
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Fig. 2. Amount of Restorable Page Cache in the Memory with WebServer
Workload (left) and TPC-C Workload (right), Normalized by the Total
Memory Usage of the VM.

as possible for page cache. Page cache is an on-memory cache
mechanism to hide the gap between the accessing speed of
memory and storage and is implemented in many modern
operating systems such as Linux, Windows and BSDs. When
an IO operation is requested for a disk block, the read/written
data is stored in the page cache to accelerate future requests
for the same disk block. Restorable page cache refers memory
pages whose data can be restored from the identical disk
blocks even if it is deleted. Note that memory pages containing
write-cache which has not yet been flushed are not restorable.

Figure 2 shows the amount of restorable page cache con-
tained in the memory of a VM running a workload with
large amount of data. The x-axis shows the elapsed time
from the beginning of the workload, and the y-axis shows
the normalized amount of restorable page cache. The values
are normalized by being divided by the total memory usage of
the VM. WebServer is a workload that simulates a web server
under high load. The VM has 3 GB of memory and the total
size of the web contents is also 3 GB. TPC-C is a workload
that simulates the typical database access pattern for an online
shopping web site. The VM has 1 GB of memory and the total
size of the database is 1.9 GB. The detailed descriptions of
WebServer and TPC-C workloads are given in Section VII.
The figure shows that both VMs have many memory pages
(more than 80% of all pages) identical to disk blocks due to
the restorable page cache most of the time during the workload
execution. The values are small in the beginning but this does
not weaken our claim because the periods are warming-up
phases of the workloads.

III. RELATED WORK

It has been pointed out that the large amount of page cache
slows down total migration time thus it must be approached.
Koto et al. discuss computational and time costs of live mi-
gration (referred as migration noise) in [5]. The work reduces
the migration noise by skipping the transfer of restorable pages
including page cache, free pages, and kernel objects that can
be regenerated from other data. This method degrades IO
performance of the VM due to the loss of page cache after a
migration. Hines et al. also skips the transfer of the page cache
by using the balloon driver of Xen [6]. In a paravirtualization
environment with Xen, a guest OS returns unused memory
pages to the Xen using the balloon driver. Hence, Xen can skip



the transfer of the deleted page cache in a live migration. This
method also degrades the IO performance of the VM after a
migration because the VM must reload the deleted page cache
from the disk.

Transferring page cache from storage to achieve fast live
migration has been proposed [8], [9]. The main difference
between this paper and these studies is that we simultane-
ously utilize the SAN and the general purpose network in a
datacenter and it makes our proposal more widely applicable.
Their weakness is that they assume transferring the restorable
page cache from storage is much faster than transferring it via
a normal migration network. They do not simultaneously use
the SAN and the general purpose network thus they must use
a faster channel to transfer restorable page cache to accelerate
live migration. Authors of [9] also proposes using the SAN and
the general purpose network in a datacenter in parallel [10].
The difference of this paper and [10] is that we transfer a
portion of restorable page cache via the SAN to minimize the
total migration time, while they transfer the all via the SAN.

Our mechanism and many existing studies optimize differ-
ent phases of live migration thus they can be integrated and
used together. Pre-copy live migration [1] has three phases:
(1) copying all the memory pages at first, (2) iteratively
copying the updated memory pages during the 1st and 2nd

phases, and (3) copying small number of remaining memory
pages while the VM is suspended. The 1st and 2nd phases
are equally important as they transfer many memory pages,
thus integrability of our proposal to existing research is an
important characteristic. Our mechanism focuses on reducing
the transferred memory of the 1st phase of live migration,
while many existing studies [11]–[13] focus on the 2nd phase.
Post-copy live migration [14], [15] completely eliminates the
iterative copying thus it is also an optimization for the 2nd

phase. Our method benefits the post-copy mechanisms as well
because they do no optimization on the 1st phase.

IV. PROPOSAL

A. Overview

We propose an advanced memory transfer mechanism that
exploits restorable page cache and the network architecture
explained in Section II. It has three features: (1) It accelerates
live migration by exploiting the SAN of a datacenter to transfer
restorable page cache. (2) It divide restorable page cache
into two parts to fully utilize the general purpose network
when almost all memory pages are restorable. (2) It achieves
smaller IO performance penalty to the VM after a migration
than existing research by keeping the page cache warmed up
transparently from the guest OS.

Feature (1) is advanced compared to merely bonding two
IP networks for faster migration. Our proposal is applicable
without any changes to the underlying network settings even
if the SAN uses Infiniband or Ethernet because transferring
restorable page cache is handled by the shared filesystem
(further description in Section VI-D).
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Fig. 3. Procedure of Live Migration with Our Mechanism

B. Migration Procedure with Our Mechanism

The procedure of a live migration with our mechanism is
illustrated in Figure 3. A VM is being migrated from the
source (top-right) to the destination (bottom-left). The VM
on the destination is not running yet thus it is grayed out.
The dotted arrows show commands, the dashed ones show
metadata to realize our method, and the solid ones show
transfers of memory data. Detailed descriptions are as follows:

1) The source VMM receives a command (from a datacen-
ter operator or a dynamic VM placement algorithm) to
execute a migration. It requests our user-space program
inside the VM to get the page frame numbers (PFNs)
of the restorable page cache and the block numbers of
the identical disk blocks. Then the user-space program
requests our kernel module to fetch them.

2) The kernel module detects the PFNs of the restorable
page cache and the identical disk blocks.

3) The user-space program sends the PFNs and the block
numbers to the source and destination VMMs.

4) The memory transfers are kicked-off. The SAN is ex-
ploited to accelerate live migration.

a) Restoring Thread in the destination VMM transfers
the restorable page cache from the disk image via
the SAN.

b) Receiving Thread in the destination VMM receives
the other memory pages from the source VMM via
the general purpose network.

5) Memory pages updated during above steps are trans-
ferred again via the general purpose network.

6) Once the amount of remaining memory becomes suffi-
ciently small and all the restorable page cache is copied,
the execution host of the VM is switched.

C. Dividing Page Cache

A portion of restorable page cache is transferred via the
general purpose network, not via the SAN. This prevents
underutilization of the general purpose network when almost
all memory pages contain restorable page cache. A variable R
represents the ratio of restorable page cache transferred via the



SAN to all the restorable page cache. That is, R = 0.6 means
that 60% of the restorable page cache is transferred via the
SAN and 40% is transferred via the general purpose network.

The optimal R that minimizes the total migration time
depends on four factors: the amount of restorable page cache
Mp, the amount of normal memory Mn, the throughput of
transferring restorable page cache Sp, and the throughput of
transferring normal memory Sn. The optimal R satisfies:

RMp

Sp
=

Mn + (1−R)Mp

Sn
(1)

because both transfers must end at the same time to utilize the
SAN and the general purpose network equally. Therefore, the
optimal R is given by:

R =
Mp +Mn

Mp
× Sp

Sp + Sn
(2)

We justify the equations above in Section VIII using the
measured values in our experiments.

V. SIMULTANEOUS TRANSFERS

A. Overview

The technical contribution of this paper is how to realize
simultaneous transfers. It has two challenges and they are
explained in the following subsections.

Memory Consistency: Transfers of normal memory and
restorable page cache are done while the VM keeps running.
This causes updates to restorable page during a migration. Up-
dated restorable page cache must be detected and transferred
as normal memory pages because there is not guarantee that
the pages are flushed into the disk image.

Writing Algorithm: It is possible that one memory page
is written by the two threads. The writing algorithm must be
carefully designed to deal with this case.

B. Memory Consistency

The memory consistency of the VM during a migration
must be carefully dealt with. The issue is that a memory page
containing restorable page cache can be updated and can turn
into non-restorable. Suppose a memory page is updated during
a migration after it has been detected as restorable page cache.
In this case, the updated and latest data must be transferred
via the general purpose network because there is no guarantee
that the updated data has been flushed into the disk. There
are two cases in which a memory page used for the restorable
page cache is updated: the cached data contained in the page
is updated or the guest OS frees the page and use it for a
purpose other than page cache because of memory pressure.

We solve this issue with the dirty page tracking functionality
of the VMM. The x86 architecture has a dirty bit for each
memory page that is set when the page is updated. The
VMM provides a functionality to read the dirty bits from the
software level. Dirty page tracking is enabled at the source
host when a migration starts and all the memory writes after
that are tracked. A memory page updated during the tracking
is transferred via the general purpose network, even if the

memory page was restorable when the kernel module detected
restorable page cache.

C. Writing Algorithm

The simultaneous transfers are implemented by two threads
and a buffer in the destination VMM. Receiving Thread
receives and buffers normal memory pages transferred via
the general purpose network. The buffer is flushed into the
VM memory once it is filled. Restoring Thread fetches the
restorable page cache from the storage node via the SAN and
copies the data into the VM memory without buffering.

A lock mechanism is used to deal with two simultaneously
transfers because the two threads can write to the same mem-
ory page. This happens when a memory page on the source
host is updated after it has been detected to be restorable page
cache as described in Section V-B. The destination VMM has a
received flag and a mutex for each memory page. The memory
footprint during a migration by the flags and mutex is enough
small because a flag is 1 byte and a mutex is 40 bytes (in Linux
pthread implementation) and the sum is 4 % of the size of a
memory page. The flags and mutex are no longer required after
a migration thus there is no extra memory required during non-
migration time. The working algorithms of Receiving thread
and Restoring thread are as follows:

Receiving Thread: It tries to acquire the lock for a memory
page before writing to the page. If the lock cannot be acquired
it processes the next memory page in the buffer (or the first
memory page if it reaches to the end of the buffer). If the lock
is acquired, it enables the received flag for the page and copies
the transferred data into the VM memory, and then releases
the lock. The buffer prevents the receiving thread from being
blocked upon a lock conflict.

Restoring Thread: It also tries to acquire the lock for the
page before writing to a memory page. If the lock cannot be
acquired, it skips processing the page because a lock conflict
means that the updated and latest data is being written to the
memory page by the receiving thread. If the lock is acquired
and the received flag is disabled, it copies the identical disk
block to the memory page, and then releases the lock.

VI. IMPLEMENTATION

A. Components

Our system is implemented with three components. The
details of each component are described in the following
subsections. A kernel module detects the PFNs of the memory
pages containing restorable page cache and the block numbers
of the identical disk blocks to the memory pages. A user-
space program sends the PFNs and the disk block numbers to
the modified VMMs. Modified VMMs transfer the restorable
page cache via the SAN, and at the same time transfers the
other memory pages via the general purpose network.

B. Detecting Restorable Page Cache with Kernel Module

Our kernel module detects the PFNs of the memory pages
containing restorable page cache and the block numbers of the
identical disk blocks to the restorable page cache. It utilizes



OS dependent kernel functions and data structures to easily
detect them. Our current implementation requires Linux guest,
but we believe it is easy to implement it for other guest OS
(Windows provides similar kernel functions to the ones we
use in Linux). The size of the module is 155 KB only and it
takes less than a second to detect restorable page cache from
1 GB of memory and 20 GB of disk.

The use of kernel functions and data structures greatly
reduces the implementation cost to detect restorable page
cache. In Linux, pfn_to_page kernel function takes an
integer as the parameter and returns struct page kernel
data of a memory page whose PFN is the integer. If the
page contains page cache, the struct page includes a flag
indicating whether the page is flushed back to the disk, which
means this page is restorable. The disk block number that
has the identical data to the page is retrieved by passing the
struct page to another function bmap.

C. User-Space Program

Our user-space program works as a broker between the
VMM and the kernel module. When a migration is invoked,
the VMM in the source host sends a value R and a request to
get PFNs of restorable page cache and the identical disk block
numbers. The user-space program receives them and invokes
an ioctl operation of the kernel module with the given R.
Once it gets the PFNs and the identical disk block numbers
from the module, it sends them to the VMMs in the source
and destination hosts.

The mapping information sent from the user-space program
to the VMMs is an array of disk block numbers indexed by
memory page numbers, that is, the nth disk block number in
an array describes information about the nth memory page of
the VM. A non-zero number represents the disk block number
containing the identical data to the memory page. A zero in
an array means that the memory page is not restorable. For
example, an array {1234, 0, 10, 0, ...} means that the 1234th

disk block has the identical data to the 1st memory page
and the the 10th disk block has the identical data to the
3rd memory page, while the 2nd and 4th memory pages are
not restorable, and so forth. The size of an array is given by
8×NumberOfMemoryPages because a disk block number is
represented with an 8-byte unsigned integer in modern Linux.
If a VM has 4 GB of memory, the size of the mapping
information of this VM is: 8×(4 GB÷4 KB/page) = 8 MB.

D. Modified VMM

We modify QEMU/KVM to add three functionalities. First,
it has a new migration command that accepts the IP address
of the VM and the value R along with the IP address of the
destination hosts. Second, it communicates with the user-space
program inside the target VM to fetch the PFNs of restorable
page cache and the identical disk block numbers before it start
transferring the VM memory. Third it invokes two threads to
simultaneously receives the restorable page cache and the other
memory pages at the destination.

TABLE I
EVALUATION ENVIRONMENTS

HDD Cluster SSD Cluster

CPU Intel Xeon X5460 Intel Xeon 5160

Memory 8 GB 12 GB

Storage 256 GB HDD 512 GB SSD
Read: 90 MB/s Read: 170 MB/s

Network 1 Gbps NIC × 3 1 Gbps NIC × 2

Host OS Debian GNU/Linux 6.0.5 Cent OS 6.3

Guest OS Debian GNU/Linux 6.0.5

VMM QEMU 0.13.0, KVM 2.6.32

Retrieving the PFNs of restorable page cache and the
identical disk block numbers uses our kernel module and our
user-space program installed inside the VM. This requires
users of VMs to install them, but we believe this requirement
is lightweight because of two reasons. First, the kernel module
and the user-space program are simple enough (both have
approximately 200 lines of code in C) so that the users can
verify our modules are innocent. Second, our method helps
not only cloud providers but also datacenter users. Fast live
migration achieves lower energy consumption (resulting in
lower pricing) and faster load balancing.

Receiving thread and Restoring Thread are invoked to
achieve simultaneous transfers. Receiving thread receives nor-
mal memory pages via the general purpose network, and
Restoring thread transfers restorable page cache via the SAN.
Restoring Thread uses normal read/write system calls to fetch
the restorable page cache, therefore our implementation does
not require any change to the underlying network settings.
Normal read/write are automatically rerouted by the underly-
ing filesystem because disk images are on a shared filesystem
(such as NFS, ATAoE, and iSCSI) as normally done in cloud
datacenters. This means that our mechanism can be applied
even if the target datacenter uses Infiniband for the SAN while
using IP for the general purpose. On the other hand, merely
bonding the SAN and the general purpose network for faster
migration requires IP-capability of the SAN and changes to
existing datacenter network settings.

VII. EVALUATION

A. Total Migration Time: Methodology

This subsection describes the environments and workloads
used for evaluations. Two different environments, HDD Clus-
ter and SSD Cluster, are used in the evaluation. The detailed
specifications of the environments are in Table I. Both clusters
have at least two 1 Gbps network interface cards (NICs),
used for the SAN and the general purpose network. The main
difference between the two clusters is that HDD Cluster uses a
hard disk drive (HDD) as the storage of each node, while SSD
Cluster uses a solid state drive (SSD). The read throughput of
the storages are measured using bonnie++ in the host OSes.
The VMM is composed of QEMU 0.13.0 and KVM 2.6.32.
KVM is the default version of the both host OSes.



The total migration time is measured across R ranging
from 0 to 1 with 0.1 interval; i.e. R ∈ {0, 0.1, 0.2, ..., 0.9, 1}.
All values shown in the evaluation are averaged over three
runs. Each measurement uses three nodes from a cluster: two
computing nodes and a storage node shared across the cluster
via Network File System (NFS). A VM running a workload is
migrated from a computing node to another computing node.
The disk image of the VM is stored in the storage node.
The time consumed by the receiving thread and the restoring
thread to transfer memory pages are also measured for detailed
analysis.

The evaluation is conducted with two workloads: WebServer
and TPC-C. WebServer is a workload that simulates a web
server under high load. HDD Cluster is used for this work-
load. Apache web server has static files without database.The
number of files is 10,000 and the size of each file is 300 KB.
A load generator, httperf, fetches the files with the speed of
50 files/s. The load generator runs on a designated host (not the
same neither as source nor destination) and accesses the files
via the third NIC of the HDD Cluster to avoid interference to
the migration process. The migration is executed 250 seconds
after the workload started, where all the files has been cached
in the page cache. The VM is configured to have 3 GB of
memory, 1 vCPU and 20 GB of virtual disk.

TPC-C [16] is a workload that measures the performance
of a database system. It generates database access patterns
that simulates an online shopping web site. The total size of
content of the database is 1.9 GB. TPC-C was executed using
MySQL on SSD Cluster. SSD Cluster is selected because SSD
is widely used to store or cache database contents to achieve
high IO performance. The migration is executed 270 seconds
after the the workload started, where the warming up phase
of TPC-C has been finished. The VM is configured to have
1 GB of memory, 1 vCPU and 20 GB of virtual disk.

B. Total Migration Time: WebServer

The left figures of Figure 4 and Figure 5 show the total
migration time of a VM running WebServer workload. The x-
axis of each figure shows a value of R and the y-axis shows the
total migration time for the R. Figure 4 shows the results when
the network bandwidths are not limited, thus they have 1 Gbps
bandwidths. Figure 5 shows the results when the network
bandwidths are limited to 500 Mbps with tc command on
the hosts. The 1 Gbps environment assumes that there is no
interference on the network links between the source and the
destination hosts. The 500 Mbps environment assumes that
the network links cannot be fully occupied for the migration
because the hosts and the networks are shared resource in a
cloud datacenter.

The reduction ratio of total migration time achieved by our
mechanism is calculated as follows. Let TM(r) be the total
migration time when R = r and p be the value of R that
achieves the shortest total migration time. The reduction ratio
of total migration time by our method is calculated by:

1− TM(p)

TM(0)−Overhead
(3)

The overhead refers the time consumed for the steps 1–3
described in Section IV-B. Our implementation works exactly
the same as the original QEMU/KVM after the step 4 when
R = 0. It is approximately 3 seconds in WebServer workload
in both environments (regardless of R). Further discussion
about the overhead is given in Section VIII-B.

The reduction ratio of the total migration time in the 1 Gbps
and in the 500 Mbps environments are 13% (p = 0.3,
TM(p) = 28) and 32% (p = 0.5, TM(p) = 38), respectively.

The middle figures of Figure 4 and Figure 5 show the
elapsed time consumed by Receiving Thread and Restoring
Thread. The x-axis shows a value of R and the y-axis shows
the elapsed time of each thread for the R. Figure 4 shows the
results when the network bandwidths are not limited. Figure 5
shows the results when the network bandwidths are limited to
500 Mbps. The blue (or light) bars are for Receiving Thread
and the red (or dark) bars are for Restoring Thread. The
shortest time is achieved when two bars have almost the same
lengths because it means that the SAN and the general purpose
network are fully utilized throughout the migration.

The right figures of Figure 4 and Figure 5 show the amount
of data transferred by each thread. The blue (or light) bars are
for Receiving Thread, the red (or dark) bars are for Restoring
Thread, and the black line shows the sum of amounts of data
transferred by both threads. Figure 4 shows the results when
the network bandwidths are not limited. Figure 5 shows the
results when the network bandwidths are limited to 500 Mbps.
The sums are roughly the same across R, but they are not
exactly the same because memory pages updated during a
migration are transferred more than twice.

Summary: Our mechanism reduces total migration time of
a VM running a web server under high load. The reduction
ratios are 32% and 13% when a migration can use 500 Mbps
and 1 Gbps bandwidth respectively.

C. Total Migration Time: TPC-C

The left figure of Figure 6 shows the total migration time
of a VM running TPC-C workload. The bandwidth of each
network link is limited to 500 Mbps to emulate the interference
from other VMs on the datacenter. The x-axis shows a value
of R and the y-axis shows the total migration time for the R.

The total migration time is minimized with R = 0.1. Even
in this case, the reduction of the total migration time achieved
by our method is: 1 − 19

21−1 = 5%. Note that in TPC-C
workload overhead to retrieve PFNs and disk block numbers
is approximately 1 second, which is shorter than in WebServer
workload (details in Section VIII-B).

The small reduction ratio is because the read throughput of
the restorable page cache from the SSD is much slower than
the transferring throughput of normal memory. The throughput
are calculated from the middle and right figures of Figure 6.
For example, when R = 0.6 the read throughput via the SSD
is around 17 MB/s while the transferring throughput of normal
memory is around 58 MB/s. Table I shows the maximum
read throughput of our SSD is 170 MB/s, but the 10X gap
(17 MB/s vs 170 MB/s) is because the disk blocks containing
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Fig. 4. Evaluation Results with WebServer Workload in 1 Gbps Environment. Left: Total Migration Time, Middle: Elapsed Time Consumed by Receiving
Thread and Restoring Thread, Right:Amount of Data Transferred by Each Thread (red and blue bars) and in Total (black line).

59 
55 

50 47 
43 

38 
44 

50 52 
56 58 

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1T
o

ta
l 

M
ig

ra
ti

o
n

 T
im

e 
(s

)

R

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
la

p
se

d
 T

im
e 

(s
)

R

Restoring Thread Receiving Thread

0

1000

2000

3000

4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ra

n
sf

er
re

d
 D

at
a 

(M
B

)

R

Restoring Thread Receiving Thread
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Right: Amount of Data Transferred by Each Thread (red and blue bars) and in Total (black line).

21 19 20 
24 

31 
33 36 38 

40 41 
45 

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1T
o

ta
l 

M
ig

ra
ti

o
n

 T
im

e 
(s

)

R

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
la

p
se

d
 T

im
e 

(s
)

R

Restoring Thread Receiving Thread

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

ra
n

sf
er

re
d

 D
at

a 
(M

B
)

R

Restoring Thread Receiving Thread

Fig. 6. Evaluation Results with TPC-C Workload in 500 Mbps Environment. The Network Bandwidths are Limited to 500 Mbps to Emulate Interference
from other VMs Running on the Datacenter. Left: Total Migration Time, Middle: Elapsed Time Consumed by Receiving Thread and Restoring Thread, Right:
Amount of Data Transferred by Each Thread (red and blue bars) and in Total (black line).

the restorable page cache are scattered across a wide address
range on the SSD. It is not the case in WebServer workload
because a file is not split when there are enough sequential
blocks to store. Random accessing is slower than sequential
accessing even for a SSD because the internal buffer does
not work efficiently. We believe faster storage devices such as
Fusion-io improve the efficiency of our mechanism, but we did
not conduct further experiments due to equipment limitations.

Summary: Our mechanism reduces total migration time
of a VM running TPC-C workload by 5% under 500 Mbps
bandwidth. Faster storage devices should improve the ratio.

D. Small IO Performance Penalty to the VM
Our mechanism has small IO performance penalty to the

VM after a migration because it keeps the page cache warmed
up transparently from the VM. Figure 7 shows the file read
throughput of a VM on the HDD cluster. The x-axis shows
the elapsed time in second from the beginning and the y-axis
shows the throughput in blocks/second. The VM with 3GB of
memory is migrated using our method with R = 0.5 during
50 < x < 62 to measure the IO performance penalty by our
method. The file is 2 GB large and cached in the page cache
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Fig. 7. File Read Throughput of a VM Reading a Large File. Blue line shows
the result of the whole measurement and red line shows enlarged result for
62 ≤ x ≤ 70. The VM is migrated during 50 < x < 62 by our method. The
throughput recovers to the maximum 2 seconds after the migration completes
(x = 64). The degradation during the migration is out of our scope.

before the measurement. Once the end of the file is reached,
the file is read from the head again. The blue line is the result
of the whole measurement and the red line is the result during
9 seconds after the migration completes (62 ≤ x ≤ 70).

The read throughput fully recovers 2 seconds after the



migration completes, because there is no loss of page cache
after the migration in our method. We did not conduct the
same measurement with existing methods because the imple-
mentations are not provided, but deleting page cache causes
much larger IO performance penalty because reading a 2 GB
file not on page cache takes 14 seconds in our HDD cluster.
The degradation during the migration (50 < x < 62) is a
general phenomenon of migration [17] and out of our scope.

Summary: Our mechanism has negligible IO performance
penalty to a migrated VM. File read throughput of a migrated
VM fully recovers 2 seconds after a migration completes.

VIII. DISCUSSION

A. Verification of Theory using Experiment Results

The evaluation results match the theory described in Sec-
tion IV-C. We describe validation steps using the measurement
values with the WebServer workload in 1 Gbps environment.
First, Mn and Mp are approximately 88 MB and 2930 MB,
respectively. These are not estimated but the actual values.
Mn is retrieved via /proc/meminfo inside the VM and
Mp is retrieved by our kernel module. Second, Sn and Sp are
estimated as 110 MB/s and 60 MB/s, respectively. They are
estimated from the measured values in Section VII-B.

The equation (2) and Mn,Mp, Sn, Sp above give the theo-
retical optimal of R.

R =
Mp +Mn

Mp
× Sp

Sp + Sn
≈ 0.36

This almost matches the evaluation results where the minimum
migration time is achieved with R = 0.3.

B. Sending PFNs with TCP/IP

Transferring PFNs of restorable page cache and disk block
numbers with TCP/IP is the easiest method and applicable to
any practical guest OS, but has performance disadvantage. In
the WebServer benchmark, the transfer takes 3 seconds even
though the size of data to transfer is 6 MB. This is calculated
by multiplying the number of memory pages with 8 (in Linux
a disk block number is 8-bytes long). This is because the
web sever inside the VM arises many hardware interruptions
to the network interface and our user-space program cannot
use the network functionalities efficiently. Without the web
server, it takes less than 1 second to send the PFNs and disk
block numbers even if the vCPU usage is 100%. Mechanisms
that do not use network to for communications between a
host and a VM can be alternatives. Examples are Symbiotic
Virtualization [18] and the shared memory space used in [5],
although they require much implementation cost.

IX. CONCLUSION AND FUTURE WORK

Efficient live migration is a key to improve dynamic VM
placement of cloud datacenters. Recent studies tackled a
problem that a VM running workloads with large data has
large amount of page cache in its memory, which makes
live migration slow down. We propose an advanced memory
transfer mechanism for live migration, which shortens total

migration time of a VM having large amount of page cache
with smaller IO performance penalty than existing studies. The
experiments showed that our method shortened total migration
time with significantly small IO performance penalty. Future
work includes automatic tuning of R and integration of our
method with dynamic VM placement algorithms.
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