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Abstract—Live migration of virtual machines over a wide
area network has many use cases such as cross-datacenter
load balancing, low carbon virtual private clouds, and disaster
recovery of IT systems. An efficient wide area live migration
method is required because cross-datacenter connections have
a narrow bandwidth. Page cache occupies a large portion of
the memory of a Virtual Machine (VM) when it executes data-
intensive workloads. We propose a new live migration technique,
page cache teleportation, which reduces the total migration time
of wide area live migration and has a low overhead. It detects
the restorable page cache in the guest memory that has the same
contents as the corresponding disk blocks. The restorable page
cache is not transferred via the WAN but is restored from the disk
image before the VM resumes. In this way, the IO performance
degradation reduces after the migration. Evaluations show that
page cache teleportation reduces the total migration time of wide
area live migration and has a lower performance overhead than
existing approaches.
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I. BACKGROUND

A. Wide Area Live Migration

Wide area live migration has many use cases. Al-Kiswany et
al. achieve cross-datacenter load balancing by using wide area
live migration [1]. Load balancing within a datacenter with
local area migration is widely adopted in research and prod-
ucts [2], [3], but [1] is unique in the point that it distributes the
load of a datacenter to other distant datacenters. Moghaddam
et al. minimize the carbon footprint of a virtual private cloud
through a live migration of VMs to a datacenter that uses clean
energy sources as much as possible [4]. Tsugawa et al. [5]
proposes to use wide area live migration for disaster recovery
of indispensable IT systems. VMs can survive a disaster by
using live migration of them to safe datacenters when a disaster
occurs. The work shows that when the great earthquake hit
Japan in 2011, the network connectivity and the uninterruptible
power supply were kept alive for dozens of minutes at Tohoku
University (150 km from the epicenter).

An efficient wide area live migration method is mandatory
to allow practical use of these research. The greatest issue
to achieve this is the bandwidth bottleneck of the network
between datacenters. Connections within a datacenter are
provided with 1 Gbps or even 10 Gbps links these days.

However, cross-datacenter connections often have a narrower
bandwidth and the links underneath are shared resources.
Therefore, reducing the amount of transferred data to reduce
the total migration time is an important design criterion of
wide area live migration.

B. Impact of Page Cache upon Live Migration

Page cache is on-memory cache for disk access, which is
slower than memory access. Free memory pages are allocated
as much as possible for page cache in Linux and Windows.
Hence a large portion of a guest memory is used for page cache
when data-intensive workloads such as web servers with large
contents and transaction systems with databases are executed.
Therefore, reducing the amount of transferred memory used
for page cache is important in wide area live migration.

Deleting page cache just before a live migration to reduce
the memory transfer is problematic. Page cache is restorable
when the same data exists on disk. Deleting restorable page
cache and reloading it after a migration has been suggested in
existing research [6], [7], [8]. However, this approach degrades
the IO performance of the guest OS after a migration in some
workloads because the cache does not exist on the memory
and, thus, has to be reloaded from the disk image.

C. Research Goal

Our goal is to invent low-cost live migration techniques
and to achieve a more aggressive VM placement optimization
than existing studies. Some studies (e.g. [9]) ignore the costs
of live migration and cannot be adopted to the real world.
Others (e.g. [10], [11]) avoid the costs by limiting the number
of migrations or abandoning the use of them; thus, their op-
timization policies are conservative. We believe that reducing
the cost of live migration mitigates these disadvantages.

This paper focuses on reducing the cost of wide area live
migration by taking page cache into account. As described
in Section I-B, page cache in a guest memory has a great
impact on the performance of live migration. In [12], we have
accelerated live migration by keeping a VM memory image
on a host and reusing the unchanged memory pages when
the VM migrates back to the host. This is useful when the
page cache in the guest memory is large because it can stay
unchanged for a long time. However, the utility is limited in
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Fig. 1. Proposed live migration procedure. (1) Disk image is synchronized
before a migration. (2) Write accesses to the memory are tracked during the
following steps. (3) The kernel module detects where the restorable page
cache is on the guest memory and the disk. (4) The module sends them to
the VMMs. (5) The destination VMM copies the disk blocks to the guest
memory. (6) The source VMM sends memory pages except the restorable
page cache, which has not been modified during steps (3)–(5).

a WAN environment because a VM must return to a host on
which it has been executed before. Thus we investigate a new
technique suitable for wide area live migration in this paper.

II. PROPOSAL: PAGE CACHE TELEPORTATION

A. Overview

Our proposal, page cache teleportation, reduces the amount
of transferred memory used for page cache while introducing a
lower performance overhead on the target VM, in comparison
to existing research. It consists of two main features:

1) Page cache is restored from the disk image at the
destination instead of being transferred over the WAN.

2) The restore process is executed while the VM keeps
running on the source.

Feature (1) accelerates wide area live migration as reading
the page cache from a local disk or a datacenter-local shared
storage is much faster than transferring it over the WAN.
Feature (2) reduces the penalty to the IO performance because
page cache has been fully restored when the VM resumes.

B. How Our System Works

Wide area live migration with page cache teleportation is
executed as illustrated in Figure 1. Detailed descriptions of
each step are as follows:

1) The disk image is synchronized before a live migration.
2) Write access to the memory is tracked during the fol-

lowing steps (please refer to Section III-C for details).
3) Our kernel module inside the guest OS detects the page

frame numbers (PFNs) of the restorable page cache and
the corresponding disk block numbers.

4) Our user-space program inside the guest OS sends the
PFNs and the disk block numbers to the source virtual
machine monitor (VMM) and the destination VMM.

5) The destination VMM copies the restorable page cache
to the guest memory (page cache restore).

6) The source VMM transfers the guest memory except the
restorable page cache to the destination over the WAN.
The guest OS is instantly suspended and the CPU states
are transferred when the amount of remaining memory
becomes sufficiently small.

III. IMPLEMENTATION

A. Design

We use QEMU/KVM as the VMM because it is open-
source and widely used in the research field. We modularize
the implementation into three components:

1) A kernel module that detects the PFNs of the restorable
page cache and the corresponding disk block numbers.

2) A user-space program that sends the PFNs and disk
block numbers to the VMMs.

3) A modified VMM that copies the restorable page cache
to the guest memory at the destination, and skips trans-
ferring it at the source. It also tracks write access to the
memory at the source to keep the memory consistency.

B. Detecting Restorable Page Cache

Our kernel module detects the PFNs of the restorable page
cache in the guest memory and the corresponding disk block
numbers in the disk image. This is the only part in our proposal
that depends on a specific guest OS. Currently we support only
Linux, but we have a plan to support other operating systems.
The module has 200 lines of code and takes up 155 KB in
binary format. Thus, it is sufficiently small to be installed
in the guest OS. It is executed only during migrations and
takes less than 1 second to scan 1 GB of memory. Compared
to an approach in which the host OS analyzes the guest
memory, this design reduces the cost of the implementation
and adaptation to applications that has an own cache manager.
The module does not need to know the binary placements
of kernel data structures, though analyzing the guest memory
from the host OS requires that. Restoring the own cache of
an application requires a new module and a new user-space
program but VMMs need not to be updated, which means
datacenter operations are not interrupted.

The module easily detects the page cache using kernel func-
tions of the guest OS. In Linux, the PFN of a memory page
can be translated into the disk block number corresponding
to it by using certain kernel functions (pfn_to_page and
bmap), if the page is used for page cache. A kernel data
structure includes a flag indicating that the memory page is
not yet written back to the disk and the page is not restorable.
Windows also provides similar functionalities, which can be
used in the future to port the module into Windows.

The PFNs and the disk block numbers retrieved by the
kernel module are sent to the VMMs by our user-space
program inside the guest OS. Any communication mechanism
can be used between the program and the VMMs; we simply
use TCP/IP. Mechanisms such as a shared memory between
the guest OS and the source VMM can be used, but could
have OS dependencies and few advantages.



TABLE I
EVALUATION ENVIRONMENT

CPU Intel Xeon X5460 (4 cores)

Memory 8 GB

Disk 250GB HDD (read: 90 MB/s, write: 25 MB/s)

Network limited to 100 Mbps or 50 Mbps

OS Debian 6.0.5 (Linux 2.6.32)

QEMU 0.13.0

C. Guaranteeing Memory Consistency

The most important challenge in our system is how to
guarantee the consistency of the guest memory during a
migration. The page cache is restored at the destination while
the guest OS continues running on the source to avoid causing
an IO performance overhead on the guest OS. Suppose a
memory page that contains restorable page cache is updated
while the page cache is being restored. In this case, the page
must be transferred via the WAN to keep the consistency
because the restored data is obsolete. There are two cases in
which a memory page used for the page cache is updated:
the cache data contained in the page might be updated or the
guest OS might free the page and use it for a purpose other
than page cache.

We solve this issue by using the dirty page tracking func-
tionality of the VMM. The x86 architecture has a dirty bit for
each memory page that is set when the page is updated. QEMU
can read the dirty bits from a user-space context. Dirty page
tracking is enabled at the source when a migration starts and
all the memory writes are tracked afterwards. A memory page
updated during the tracking is transferred over the WAN, even
if the memory page was restorable when the kernel module
detected restorable page cache.

D. Restoring Page Cache

The restorable page cache is copied into the guest memory
by a user-space context of QEMU. The copy operations are
done transparently to the guest OS. Disk blocks (4 KB each)
that include the restorable page cache are copied in the
ascending order of the disk block numbers. This is because
read throughput of a physical disk is in general maximized
with sequential reads.

Analyzing and modifying the kernel data structures is not
required. Instead, simply copying the disk blocks to the guest
memory is sufficient. The data contained in restorable page
cache are the contents of files and their metadata on the disk
image (e.g. inode), thus they are exactly the same in memory
and on disk. Note that updates to the page cache are properly
treated as describe in Section III-C. Run-time metadata, such
as a radix-tree to look up page cache, is treated as normal
memory pages and transferred over the WAN.

IV. EVALUATION

A. Total Migration Time

We show that page cache teleportation reduces the total
migration time of wide area live migration. The total migration
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Fig. 2. Total Migration Time (seconds) of the Web Server Benchmark
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Fig. 3. Total Migration Time (seconds) of the TPC-C Benchmark

time refers to the time period between the start of a migration
and the point when the memory, CPU and device states have
been transferred to the destination. A VM running practical
benchmarks was moved by live migration over a simulated
WAN and the total migration time was measured. Migrations
were executed with the original QEMU/KVM and with our
VMM in which we implemented page cache teleportation. The
executed benchmarks are as follows:

Web Server: A simulated web server benchmark without
a database. Apache manages static files and a load-generator
reads the files from outside of the VM. The files are read using
a different network from the one used by the live migration
to avoid bandwidth pressure. The number of files is 1024 and
the size of each file is 300KB (imitating the typical size of a
flash content or an image).

TPC-C [13]: A simulated transaction system with a
database. The system generates DB access patterns of a mimic
net shopping web site. The total size of the DB data is 1.9 GB.

The evaluation environment is described in Table I. The
guest OS is Debian 6.0.5 with 1 CPU and 1 GB of memory.
Note that the guest kernel version or OS distribution can be
different from those of the host. The network bandwidth was
limited to 100 Mbps or 50 Mbps by using the tc command at
the hosts. The read/write throughput of the HDD was measured
by bonnie++ [14] with a sequential access pattern. The disk
image is synchronized between the hosts using DRBD [15].



TABLE II
AMOUNT OF TRANSFERRED MEMORY

Web Server TPC-C

Proposed Original Proposed Original

100 Mbps 110 MB 487 MB 142 MB 440 MB
50 Mbps 110 MB 498 MB 139 MB 415 MB

Figure 2 and Figure 3 show the total migration time for
each benchmark. The values are averaged over three runs.
The labels “Original” and “Proposed” mean that we used
the original QEMU/KVM and the one integrated with our
proposal, respectively. The blue part of each bar indicates the
time consumed to transfer the memory pages, and the pink
part indicates the time consumed to restore the page cache. In
the Web Server benchmark, page cache teleportation reduced
the total migration time more than 50% in both the 100 Mbps
and 50 Mbps environments. The time consumed to restore the
page cache is constant regardless of the bandwidth. This is
because the disk image is synchronized before the migration
starts and the time depends only on read throughput of the
disk image. In the TPC-C benchmark, our proposal reduced
the total migration time in the 50 Mbps environment, but not
in the 100 Mbps environment. The reason is that the disk read
throughput was slower than 100 Mbps because the restored
disk blocks are scattered over a wide range of the disk image
in this benchmark.

Table II describes the amount of transferred memory in the
benchmarks. The values are averaged of over three runs and
do not include the amount of the restored page cache. Apache
manages 1024 static files with 300 KB each, thus the total
size of the files is 300 MB. The reductions are meaningfully
larger than 300 MB for both bandwidths, because the page
cache contains not only Apache contents but also kernel code,
shared libraries, etc. We found that even when the guest OS
is completely idle, 45 MB of the memory is reduced through
our proposal. The results of the TPC-C benchmark show that
our proposal reduced the memory transfer around 300 MB
in both bandwidths. Note that the “Original” had a shorter
total migration time in the 100 Mbps bandwidth case than our
proposal, as explained in the end of the previous paragraph.
The amount of transferred memory was less in 50 Mbps than
in 100 Mbps because the TPC-C performance was penalized
by the degradation of the disk synchronization performance
due to the narrower bandwidth.

B. Performance Penalty on the Guest OS

This section shows that the performance penalty of our
proposal is sufficiently small. Page cache conceals the gap
between the access speeds of the memory and the disk, thus,
deleting the page cache penalizes the IO performance of the
guest OS. On the other hand, our proposal restores the page
cache before the guest OS resumes at the destination. The
page cache is fully warmed up from the view point of the
guest OS, thus, no penalty on IO performance occurs.

Figure 4 shows the file read throughput of a VM, which
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Fig. 4. File read throughput with our proposal (top) and with an approach
that deletes the page cache just before a migration (bottom). The migration
starts from the 150th second in both cases. The figures show that our proposal
incredibly reduces the IO performance penalty.

is live migrated at the 150th second. The VM reads a 1
GB file during 250 seconds, starting again from the head
after it reaches the end of the file. The top figure shows
the results with our proposal and the bottom one shows the
ones with a naı̈ve method, which deletes page cache just
before a migration (Linux supports to delete page cache with
/proc interfaces). The throughput is low at the beginning
but increases at 15 seconds due to the page cache. In the top
figure, the throughput degrades when the migration starts due
to the load of memory copying and networking, but it recovers
in few seconds because the page cache is restored before the
VM resumes. However, the bottom figure shows 15 seconds
of throughput degradation because the guest OS must reload
the file from the disk image.

V. RELATED WORK

We compare our proposal with existing research in this sec-
tion. Koto et al. discuss computational costs of live migration
(referred as migration noise) in [7]. The work reduces the
migration noise by skipping the transfer of restorable pages
including page cache, free pages, and kernel objects that can
be regenerated from other data. Hines et al. skip the transfer
of the page cache by using the balloon driver of Xen [8]. In
a paravirtualization environment with Xen, a guest OS returns
unused memory pages to the Xen using the balloon driver.
Hence, if the guest OS deletes the page cache then Xen can
skip the transfer of the page cache in a live migration.

The biggest difference between our proposal and these
works is whether the page cache is restored before the guest
OS resumes or not. Our proposal restores the page cache
before the guest OS resumes and minimizes the performance
penalty as evaluated in Section IV-B. On the other hand, in
the existing research, the guest OS must reload the page cache
after a migration and its IO performance will be degraded.



Many research approaches reduce the total migration time
with different techniques. Svärd et al. compress the delta of
two versions of a memory page when the page is re-transferred
in pre-copy live migration [16]. Zhang et al. deduplicate
memory pages that have the same contents using a hash
function [17]. Wood et al. combine above two techniques with
smart stop and copy, which minimizes the number of iterative
copies of updated memory pages [18]. These approaches can
be used together with our proposal.

VI. CONCLUSION AND FUTURE WORK

This paper proposes page cache teleportation to accelerate
wide area live migration by reducing the amount of transferred
memory used for page cache. We detect the location of the
page cache in the guest memory and restore it from the disk
image instead of transferring it over a WAN. Our proposal
does not degrade the IO performance of the guest OS after
a migration, in comparison to existing research. Evaluations
show that page cache teleportation reduces the total migration
time of wide live migration under limited bandwidth, and that
the performance penalty to the guest OS is much smaller than
existing research.

Page cache teleportation demands large-scale experiments
and technical improvements. Large-scale experiments help to
evaluate the temporal locality of page cache in real appli-
cations and network pressure to synchronize disk images.
Temporal locality affects the overhead of deleting the page
cache; thus, evaluating it clarifies the utility of our proposal.
Possible technical improvements include concurrent execution
of page cache restore and the transfer of other memory pages.
They use different data channels (storage IO and network) and
can be overlapped to accelerate the wide area live migration
even more.

This paper is a milestone of our research goal to an achieve
aggressive VM placement optimization based on fast live
migration. In [12] and this paper, we have accelerated local
and wide area live migration with the assumption that the page
cache occupies a large portion of guest memory. Future work
includes (1) combining our techniques with existing research
that exploits other memory characteristics than page cache and
(2) investigating a new VM placement mechanism that utilizes
our fast live migration techniques aggressively.
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